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ABSTRACT

Potential Drop (PD) and Eddy Current Testing (ECT) are two common Non-Destructive

Evaluation (NDE) methods, which have been used for decades. The modeling research of

these problems can help in designing and improving testing technologies, explaining inspection

results, and even making the more complex problem solvable, like inverse analysis of flaws and

cracks in ECT and case-hardening problem with alternating current potential drop (ACPD).

In this dissertation, extensive theoretical modeling research work has been developed.

For direct current potential drop (DCPD) problems, first, an analytical solution of model-

ing edge effects of metal plates with finite thickness has been presented. When dealing with

plates somewhat thicker than the probe dimensions, a method-of-images is applied with fast

convergence. For thinner ones, a Fourier series summation method, which is obtained using

expressions originally developed to evaluate lattice sums in solid-state physics, can overcome

traditional slow convergence problem and effectively reduce the triple infinite summation that

results from the method-of-images to a double one.

Next, an analytical model of DCPD on uniformly layered conductive cylinders of finite

length is developed. The solution is expressed in terms of a Green’s function, which satisfies

Neumann boundary conditions, and can be extended to a conductive cylinder with an arbitrary

number of uniform layers, like the common case-hardening problems. This model can be used to

determine the thickness or the conductivity of layered cylinders, especially helpful in monitoring

wall thickness in power or chemical plants due to its high sensitivity to the thin tube thickness.

For ECT problems, first, an analytical model of an axisymmetric eddy current ferrite-cored

coil above a multi-layered conductive half-space is presented by radially truncating the domain

of the problem. In this work, the reflection and transmission coefficient matrices due to the

end effects of the ferrite core have been introduced, then by using a recursion relationship,

the reflection coefficient of a conductor with an arbitrary number of uniform layers has been
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determined. Furthermore, this approach can be extended to other axisymmetric ferrite core

shapes, such as U-shape and E-shape. It is also possible to extend this approach to 3D problems

in Cartesian coordinates using a double truncated series.

Then, a semi-analytical model of a differential bobbin coil impedance variation due to a

common coaxial circular tube support plate has been developed. Within a truncated domain,

the magnetic vector potential can be represented by a Fourier series and the effect of the

tube support plate is evaluated theoretically. The close-form expression of the magnetic vector

potential in a tube is critical for the more complicated 3D model for a support plate problem

with a flaw or crack in the adjacent tube.



www.manaraa.com

1

CHAPTER 1. GENERAL INTRODUCTION

1.1 Introduction

Non-Destructive Testing (NDT) is an interdisciplinary field consisting of a wide group

of measurement and analysis techniques used in research and industry to characterize the

properties of materials, tissues and structures without causing any damage to them. The

common methods include ultrasonic, radiographic, acoustic, thermographic, electromagnetic,

visual inspection and etc, which can be used to inspect the interior or characterize subsurface

structures and contribute a lot in different applications, like manufacturing process control, oil

pipeline, structure health monitoring.

1.2 Four-point Potential Drop Measurements

Four-point potential drop (PD) measurements are widely used in the field of NDT to char-

acterize electrical conductivity or resistivity of of materials, determine the surface crack sizing

or the depth of a long surface crack, monitor changes in the condition of metals due to heat

treatments or the variation of tube wall thickness due to corrosion in plant or chemical plants.

Furthermore, a new microscale Hall effect measurement method for fast characterization of

the semiconductor thin film using colinear four-point probes has been developed. Recently,

microscopic measurements have become possible with the advent of micron scale probes for the

study of local material property variations.

In a common type of four-point probe, the current is passed through a specimen via a

pair of spring-loaded pins while the potential drop is measured between a second pair of pin

electrodes. The electrodes are often co-linear or can be placed at the corners of a rectangle. For

any arrangement, the effect of contact resistance is minimized by connecting the voltage pick-
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up pins to a relatively high impedance instrument to measure the potential drop accurately.

Often, although not necessarily, the probe points are arranged in a straight line as shown in

Figure 1.1. Generally, the current is injected and extracted via the outer two pins (P1 and P2)

and the floating potential drop is measured across the inner two pins (Q1 and Q2) with a high

input impedance circuit. Although most measurements use direct current (DC), tests can also

be performed by injecting alternating current (AC) at selected frequencies and the observations

can be analyzed with theoretical predictions of the time harmonic potential. In addition, the

modeling work for the four-point probe potential drop with the transient current injected

has been analyzed. Since the measured signal is inversely proportional to the conductivity,

a good signal-to-noise ratio can be guaranteed for low-conductivity materials, for instance,

in the semiconductor industry to determine the surface resistivity of semiconductor wafers.

Besides, compared with other measurement methods such as the eddy current technology, PD

can be applied to determine the conductivity and permeability of ferrous metals since both

parameters are completely decoupled in the quasi-static regime which is very important and

useful in measurements.

Figure 1.1 Co-linear four-point probe in contact with a conducting test-piece.

For the purpose of modelling the edge effect in four-point DCPD measurements on metal

plates, several approaches have been brought forward. A solution via conformal transformation

assumes that the specimen is thin compared to the probe spacing. An analytical solution

of the Poisson equation (1) does not restrict the thickness of the specimen, but the form
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of the solution is complex and the convergence of the solution is poor for thick samples. A

conventional method-of-images solution yields a simple and elegant solution form, but generally

converges slowly if at least one dimension of the specimen is small relative to the probe pin

spacing. To improve upon numerical calculation of slowly converging infinite summations,

Uhlir (2) evaluated some auxiliary functions and tabulated the potentials of several simple

image systems. Hence, to establish an accurate theoretical model for the edge effect in DCPD

with fast convergence, which can overcome the above restriction, is meaningful.

Using alternating current potential drop (ACPD) measurements to determine the case depth

of induction-hardened steel rod is a very interesting and challenging topic and there are some

related and preliminary studies given recently (3; 4). It is a critical and necessary step to solve

this problem to derive the analytical expression of four-point DCPD on a uniform layered metal

cylinder first. In addition, since the DCPD method has the advantage of being independent of

magnetic permeability of the conductor, it is suitable for the measurements on ferrous tubes or

layered rods. Besides, this method is very sensitive to the variation of the thin tube thickness

and it can be used to determine the wall thickness in power or chemical plants.

1.3 Eddy Current Testing

Eddy current testing (ECT) is one of most popular NDT methods, which is applied to detect

cracks or flaws and make measurements for conducting materials. ECT can help characterize a

wide group of conducting material conditions, like defects, composition, hardness, conductivity,

thickness, and etc. Generally, the ECT instruments are very portable, minimum efforts are

required to set up the inspection, even for complex shapes and sizes of test piece, and immediate

results can be given, so it widely applied in materials, nuclear, petroleum, aerospace and

manufacturing process.

The basic principle of ECT is that when a coil excited by an alternating current is placed

in proximity to a conducting test piece, the changing magnetic field generated by the coil

can induce eddy current in the test specimen. Variations in the conductor, such as electrical

conductivity, magnetic permeability or the presence of cracks or corrosions, will change the

induced eddy current and then affect the impedance of the coil correspondingly. A typical
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ECT application is as shown in Figure 1.2, in which an air-cored coil of rectangular cross-

section above a conducting plate with a surface-breaking crack.

Figure 1.2 An air-cored coil above a conductive plate in the present of crack.

An air-cored coil above a multi-layered conducting half-space has been studied extensively

due to the fact that the coil characteristics are relative easy to predict theoretically and mea-

surements can be readily interpreted in terms of a well known model. A ferrite core in an eddy

current probe usually improves the signal-to-noise ratio and resolution of defect detection, es-

pecially at a relatively low working frequency. Compared with air-cored probes, the ferrite

cored probe usually has a better performance, particular for the detection and characterization

of deep surface flaws. Although there are a number of numerical methods available to predict

ferrite-cored probe fields, it is of great value to have instead an accurate analytical or semi-

analytical method for finding the field and impedance of such probes, especially one that is

relatively simple and easy to implement.

The problem of calculating eddy current probe signals of bobbin coils used for tube inspec-

tion has been studied extensively to simulate the testing heat exchangers. This is motivated by

the use of numerical simulations to improve inspections and to aid in the interpretation of test

data. Calculations can be time consuming if the numerical formulation leads to a large num-

ber of unknowns but the computational cost can be greatly reduced by using semi-analytical

methods. In particular, calculations of the response due to a flaw in a tube can be carried out

efficiently using integral methods because one can derive an integral kernel for an infinite tube
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problem, in which case, the flaw signal can be determined accurately, efficiently and quickly.

If there is a tube support plate, the probe signals caused by it are usually larger than those

due to cracks, and can mask the flaws signals, so, it is critical to isolate its effect during the

inspection.

1.4 Dissertation Organization

This dissertation can be divided into two parts based on the types of nondestructive tech-

nologies: the direct current potential drop measurements are studied in Chapters 2 through 3

and eddy current technologies are developed in Chapter 4 through 5.

Chapter 2 presents an analytical solution of modelling edge effects in DCPD measurements

on metal plates with finite thickness. A method-of-images solution converges quickly for plates

somewhat thicker than the probe dimensions. A Fourier series summation, obtained using

expressions originally developed to evaluate lattice sums in solid-state physics, converges more

quickly for thinner plates and effectively reduces the triple infinite summation that results

from the method-of-images to a double infinite summation. The work of this chapter focuses

on DCPD measurements, from which the metal conductivity can be deduced. In Chapter 3,

the steady state electric field due to direct current flowing via point contacts at the cylindrical

surface of a uniformly layered conductive rod of finite length has been determined. Green’s

function satisfying Neumann boundary conditions is applied to derive the theory solution.

And a group of four-point DCPD experiments are used to verify the theory solution, showing

good agreements between the theory and experiment. These analytic solutions offer a non-

destructive determination of the thickness or electrical conductivity of the layered cylinder

if the other parameters are given. Further, if using more than four electrodes or connecting

electrodes in different configurations, one can determine the thickness and conductivity at the

same time.

Chapter 4 presents an analytical model of an axisymmetric eddy current ferrite-cored probe

above a multi-layered conducting half-space using a procedure in which the domain of the

problem is truncated radially. Reflection and transmission coefficient matrices due to the

end effects of the ferrite core have been introduced. By using a recursion relationship we
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have determined the reflection coefficient of a conductor with an arbitrary number of uniform

layers. This relationship is used, together with the ferrite core probe model to predict probe

impedances for a simple ferrite core probe above a multi-layered conductor. For multi-frequency

modeling only the reflection matrix changes with frequency and therefore the calculations can

be done efficiently. Furthermore, this approach can be extended to other axisymmetric ferrite

core shapes, such as U-shape and E-shape. It is also possible to extend this approach to 3D

problems in Cartesian coordinates using a double truncated series. In Chapter 5, a semi-

analytical model of a differential bobbin coil impedance change due to a coaxial circular tube

support plate has been developed. Within a truncated domain, the axial dependence of the

magnetic vector potential can be represented by a Fourier series and the problem is solved to

account for effects of the tube support plate in which the expansion coefficients in this series is

found. The theoretical calculations show an excellent agreement with the numerical results of

FEM. Besides, the close-form expression of the magnetic vector potential in a tube is critical

for the more complicated 3D model for a support plate problem with a flaw or crack in the

adjacent tube. The approach can be extended to model other similar symmetric structures,

such as an internal or external groove in a tube.
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CHAPTER 2. EDGE EFFECTES IN FOUR-POINT DIRECT CURRENT

POTENTIAL DROP MEASUREMENTS ON METAL PLATES

A paper published in The Journal of Physics D: Applied Physics

Yi Lu, Nicola Bowler, John R. Bowler and Yongqiang Huang

2.1 Abstract

Four-point direct current potential drop measurements are commonly used to measure the

conductivity (or resistivity) of semiconductors and ferrous or non-ferrous metals. The measured

electrical potential difference is often interpreted in terms of analytic expressions developed for

large plates that are either ‘thin’ or ‘thick’ relative to the probe length. It is well-known that

the presence of the back surface of a plate leads to a solution expressed in terms of an infinite

series representing the current source and its images. This approach can be generalized to

account for multiple surfaces in order to obtain a solution for a finite plate, but convergence

of the series is poor when the plate dimensions are similar to or smaller than the separation of

the current injection and extraction points. Here, Fourier series representations of the infinite

sums are obtained. It is shown that the Fourier series converge with many fewer terms than

the series obtained from image theory, for plates with dimensions similar to or smaller than the

separation of the current injection and extraction points. Comparing calculated results for the

potential drop obtained by a four-point probe centered on finite plates of varying dimension,

with those for a probe in contact with a large (laterally-infinite) plate, estimates are given of

the uncertainty due to edge effects in measurements on small plates interpreted using analytic

formulas developed for large plates. It is also shown that these uncertainties due to edge effects

are reduced, for a given plate size, if the probe pick-up points are moved closer to the current
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injection points, rather than adopting the common arrangement in which the four probe points

are equally spaced. Calculated values of direct current potential drop are compared with

experimental data taken on aluminium and spring-steel plates of various sizes and excellent

agreement is obtained.

2.2 Introduction

The direct current potential drop (DCPD) technique is widely used to characterize electri-

cal conductivity (or resistivity) of materials in the semiconductor industry (1), in biomedical

research (2) and in geophysical applications (3). Compared with other measurement methods

such as eddy-current technology, DCPD can be applied to measure the conductivity of ferrous

metals, being independent of magnetic permeability. For DCPD measurements, the four-point

probe is one of the most common probe configurations used in practice. Often, although not

necessarily, the probe points are arranged in a straight line as shown in Figure 2.1. Generally,

Figure 2.1 Co-linear four-point-probe in contact with a conductive test-piece. The pins are

spring-loaded to ensure good electrical contact with the test-piece. Current is

injected and extracted via the outer two pins. Floating potential difference is

measured across the inner two pins.

the current is injected and extracted via the outer two pins (P1 and P2) and the floating po-

tential drop is measured across the inner two pins (Q1 and Q2) with a high input impedance

circuit. When the probe is sufficiently far from the boundary of the specimen (eight or nine

times the probe length, to be shown here), the current distribution is not significantly disturbed

by the specimen boundary. When the probe is close to the boundary, however, the current can
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be significantly distorted which results in an increase in the measured potential drop. So, even

for a homogeneous, uniformly-thick specimen, different voltages may be measured at different

probe positions.

For the purpose of modelling the edge effect in four-point DCPD measurements, several

approaches have been brought forward. A solution via conformal transformation (4; 5) assumes

that the specimen is thin compared to the probe spacing. An analytical solution of the Poisson

equation given in reference (5) does not restrict the thickness of the specimen, but the form

of the solution is complex and the convergence of the solution is poor for thick samples. A

conventional method-of-images solution (6) yields a simple and elegant solution form, but

generally converges slowly if at least one dimension of the specimen is small relative to the probe

pin spacing. To improve upon numerical calculation of slowly converging infinite summations,

Uhlir (7) evaluated some auxiliary functions and tabulated the potentials of several simple

image systems, for ease of reference.

This paper first establishes a theoretical model for the configuration in which the probe is

close to one edge of a large plate with arbitrary thickness. In this case the test-piece has three

bounding surfaces. Although the method of images gives a solution of simple form, it converges

slowly for a plate thinner than the probe length. To overcome this disadvantage, a Fourier

Series representation is established that gives much faster convergence for plates thinner than

the probe dimension. Next, additional boundaries are considered and solutions given for a long

plate of finite width (four bounding surfaces) and a plate that is finite in all three dimensions

(six bounding surfaces). Comparison between theory and experiment on several aluminium

and spring-steel plates of various sizes gives excellent agreement. Because measurements on

‘thin’ plates are commonly interpreted using analytic formulas that do not account for edge

effects, estimates are given of the uncertainty due to edge effects in measurements on small

plates interpreted using analytic formulas developed for large thin plates. Additionally, it is

shown that these uncertainties are reduced, for a given plate size, if the probe pick-up points

are moved closer to the current injection points, rather than adopting the common arrangement

in which the four probe points are equally spaced.
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2.3 Theory

The theoretical model presented here makes some assumptions. The current and voltage

contacts are modelled as infinitesimal points on the specimen surface, which is assumed to be

flat. In addition, the plate is assumed to be homogeneous and isotropic with linear material

properties. These approximations are shown to be reasonable since the theory agrees well with

experimental data, as shown later.

2.3.1 Half-space Conductor

Figure 2.2 Injection of DC current at the surface of a half-space conductor.

First, consider the simple problem shown in Figure 2.2. Direct current I is injected into a

half-space conductor at point P and diverges uniformly. This gives rise to the electric potential

Φ for a point in the conductor given by

Φ =
I

2πσr
, (2.1)

where σ is the conductivity of the test-piece and r =
√

(x− x′)2 + (y − y′)2 + (z − z′)2 is the

distance from the injection point. Unprimed coordinates represent field points and the source

coordinates are primed. Choosing the origin of the coordinate system at the surface of the

conductor means that z = z′ = 0 and r = ρ =
√

(x− x′)2 + (y − y′)2.

In a four-point probe problem, the potential at any one point on the surface of the test-piece

results from the superposition of potentials due to both injected and extracted currents. So,
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the potential of a field point Q due to a source of current at P2 and a sink of current at P1 on

the surface is

Φ (ρ) =
I

2πσ
f (ρ) , (2.2)

with

f (ρ) =
1

ρ2
− 1

ρ1
, (2.3)

where ρj =
∣∣Q̄− P̄j∣∣ =

√(
x− x′j

)2
+
(
y − y′j

)2
and j = 1, 2. In addition, the potential drop

V between two points Q1 and Q2 on the surface of the specimen due to the current through

P1 and P2, as shown in Figure 2.3, can be written with the general form

V = ΦQ2 − ΦQ1 =
I

2πσ
[f2 (ρ)− f1 (ρ)] , (2.4)

where

fi (ρ) =
1

ρi2
− 1

ρi1
, (2.5)

ρij =
∣∣Q̄i − P̄j∣∣=√(xi − x′j)2

+
(
yi − y′j

)2
and i, j = 1, 2. Equation (2.4) provides a general

form in which the potential drop V can be expressed for any test-piece geometry. The function

f(ρ) takes different geometry-dependent forms, with the form given in equation (2.3) for the

conductive half-space being the simplest example.

Figure 2.3 Contact points for current (Pi) and voltage (Qi) electrodes on the surface of a

planar specimen (plan view).

2.3.2 Finite Thickness Conductor

In the half-space problem, the potential due to a single injected current is given by equa-

tion (2.1), which satisfies the Von Neumann boundary condition ∂Φ/∂z = 0 on the surface
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of the conductor, away from the current injection point. For a large plate of thickness c/2

whose upper surface is in the plane z = 0, Figure 2.4, there is a similar boundary condition

at z = −c/2. The method of images is employed to satisfy the conditions on both of these

surfaces.

Placing an image source at z = −c of the same polarity as the actual source, yields two

opposing currents whose z-components exactly balance in the z = −c/2 plane. Thus, with one

image source added, the Von Neumann boundary condition at z = −c/2 is satisfied. But, the

boundary condition at z = 0 is no longer satisfied because of the effect of the image source. This

effect can be balanced by introducing another image source with the same polarity at z = c.

In fact it is necessary to add images in this way in both positive and negative z-directions out

to infinity. Finally, the images of a current source at P occupy positions with period c in the

z-direction as shown in Figure 2.4.

Figure 2.4 Current source at P and image sources (open circles) required to satisfy the inter-

face conditions at the surfaces of a laterally-infinite conductive plate, here located

at z = 0 and z = −c/2.

From the method of images, a source at P2 and a sink at P1 give rise to a potential at Q

on the surface that is a generalization of equation (2.3);

f (ρ) =
+∞∑

n=−∞

 1√
ρ2

2 + (nc)2
− 1√

ρ2
1 + (nc)2
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=
1

ρ2
− 1

ρ1
+ 2

+∞∑
n=1

 1√
ρ2

2 + (nc)2
− 1√

ρ2
1 + (nc)2

, (2.6)

where ρj =
∣∣Q̄− P̄j∣∣ =

√(
x− x′j

)2
+
(
y − y′j

)2
, j = 1, 2 and the potential drop can be evalu-

ated as in equation (2.4) where

fi (ρ) =
+∞∑

n=−∞

 1√
ρ2
i2 + (nc)2

− 1√
ρ2
i1 + (nc)2

 (2.7)

should now replace (2.5) and ρij =
∣∣Q̄i − P̄j∣∣ =

√(
xi − x′j

)2
+
(
yi − y′j

)2
, i, j = 1, 2. Note,

when c → ∞ only the terms with n = 0 survive in the summations in (2.6) and (2.7), giving

the half-space results (2.3) and (2.5).

For numerical evaluation, the sum in equation (2.6) must be approximated by truncating

at a finite number of terms. In the case of a thick plate the number of terms needed for good

convergence is relatively small, whereas a large number of terms is necessary in the case of a

thin plate due to the slow convergence of the summation for thin plates. For example, 7 terms

(n = −3 to +3) are required to give 0.1% calculation accuracy for a plate with thickness 3

times the probe length P1P2, Figure 2.1, whereas 25 terms (n = −12 to +12) are required to

obtain the same calculation accuracy for a plate with thickness 1/5 of the probe length (8).

2.3.3 Finite Thickness Conductor with One Edge

When applying the method of images to obtain a solution for the measured potential drop

when the probe is near an edge of a conductive plate, it is necessary to satisfy the Von Neumann

boundary condition on the three surfaces of the conductor. Let the surfaces be at (0 ≤ y ≤

∞, z = 0), (0 ≤ y ≤ ∞, z = −c/2) and (−c/2 ≤ z ≤ 0, y = 0), as shown in Figure 2.5. First,

balance the source at P with an image source of the same polarity placed symmetrically on the

y-axis. Then, by the argument of the previous section, there are two corresponding groups of

images aligned in the z-direction with period c as introduced in Figure (2.5).

Thus the potential at a field point Q due to a current source and sink on the surface z = 0

can be written as a generalization of equation (2.6):

f (ρ) =
2∑
q=1

∞∑
n=−∞

 1√
ρ2

2q + (nc)2
− 1√

ρ2
1q + (nc)2

. (2.8)
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Figure 2.5 Current source at P and image sources (open circles) required to satisfy the inter-

face conditions near the edge of a semi-infinite conductive plate.

Here, ρjq =

√(
x− x′j

)2
+
[
y − (−1)q y′j

]2
with j, q = 1, 2. Again, by using equation (2.4) the

potential drop can be obtained. In the limiting case in which the source is moved well away

from the edge; 0 ≤ y ≤ +∞, y′ → +∞, agreement with the case of the large plate of finite

thickness is obtained, equation (2.6). In the limiting case in which the source is moved to the

edge; 0 ≤ y ≤ +∞, y′ → +0, equation (2.8) can be transformed to obtain

f (ρ) = 2
∞∑

n=−∞

 1√
ρ2

2 + (nc)2
− 1√

ρ2
1 + (nc)2

 (2.9)

precisely two times equation (2.6) in which case the electrodes are centred on a large plate.

This result has been verified experimentally as discussed in (9).

2.3.4 Fourier Series Solution

The infinite summations (2.6) and (2.8) do not converge very quickly for a plate that is

thinner than the spacing of the probe points. Convergence can be improved by adopting a

Fourier series representation for the infinite sum. The location of the current source and its

images shown in Figures 2.4 and 2.5 exhibit periodicity in the direction perpendicular to the
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plate surface, the z-direction, with period c. This means that the following identity (10) can

be used:

+∞∑
n=−∞

exp

[
−α
√
ρ2 + (z − nc)2

]
√
ρ2 + (z − nc)2

=
2

c
K0 (αρ) +

4

c

+∞∑
v=1

K0

ρ
√
α2 +

(
2πv

c

)2
 cos (2πvz/c) , (2.10)

in which Re(α) > 0 and K0(x) is the modified Bessel function of the second kind of order zero.

Putting z = 0 and α→ 0 in (2.10), equation (2.6) can be transformed to obtain

f (ρ) =
2

c
ln (ρ1/ρ2) +

4

c

+∞∑
v=1

{
K0

(
2πvρ2

c

)
−K0

(
2πvρ1

c

)}
. (2.11)

Relation (2.10) was also used in the theory of four-point alternating current potential drop on a

metal plate (8). Results (2.6) and (2.11) provide alternative means of evaluating the potential

drop measured between pick-up points of a four-point probe on the surface of a metal plate.

The infinite sum in equation (2.8) can be transformed similarly, to give the following result for

a plate with finite thickness and an edge,

f (ρ) =
2∑
q=1

{
2

c
ln
(
ρ1q/ρ2q

)
+

4

c

+∞∑
v=1

[
K0

(
2πvρ2q

c

)
−K0

(
2πvρ1q

c

)]}
. (2.12)

Figure 2.6 compares the convergence of equation (2.11) with that of equation (2.6) for a

case in which the probe length is 16 times the plate thickness (L = ρ1 + ρ2 = 8c). In general,

equation (2.11) is much more efficient for computing the potential in the case of a plate with

thickness smaller than the probe point separation.

2.3.5 Thin Plate Limiting Case

It is possible to show that only the first term on the right-hand side of equation (2.11) is

significant when the plate thickness c/2 is significantly smaller than the separation between

the probe points ρj . For large argument x, the following asymptotic expansion for K0(x) (11)

holds:

K0 (x) ∼
√
π

2x
e−x

(
1− 1

8x
+ . . .

)
, x� 0. (2.13)
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Figure 2.6 Image summation (2.6) converges slowly compared with Fourier series representa-

tion (2.11) in this case in which the probe length L is 16 times the plate thickness

(L = ρ1 + ρ2 = 6c+ 2c = 8c) and c = 2 mm. In (2.6) n = 1, 2, ..., N and in (2.11)

v = 1, 2, ..., N .

The exponential factor including the dimensionless parameter ρ/c is sufficient to make the

summation significantly smaller than the first term in equation (2.11) when ρ/c� 1 and

f (ρ) ≈ 2

c
ln (ρ1/ρ2) , ρ/c� 1. (2.14)

This result agrees with that shown in reference (12), which followed the work of Uhlir (7).

2.3.6 Conductor with Finite Thickness and Width

By extension of the approach described in section 2.3.3, the method of images can be used

to show that the potential in a conductive plate in the region 0 ≤ y ≤ b/2 and −c/2 ≤ z ≤ 0

can be represented using a two-dimensional lattice of virtual sources, as shown in Figure 2.7.

The potential of Q due to the source point P2 and sink point P1 on the surface is therefore

given by inserting the following expression into equation (2.4);

f (ρ) =
2∑
q=1

∞∑
m=−∞

∞∑
n=−∞

 1√
ρ2

2mq + (nc)2
− 1√

ρ2
1mq + (nc)2

, (2.15)

in which j, q = 1, 2, m = −∞, ..,−1, 0, 1, ..∞ and

ρjmq =

√(
x− x′j

)2
+
[
y − (−1)q y′j −mb

]2
.



www.manaraa.com

18

Figure 2.7 Current source at P and two-dimensional lattice of image sources (open circles)

required to satisfy the interface conditions at the boundaries of a plate with finite

thickness c/2 and width b/2.

In Fourier series form,

f (ρ) =
2∑
q=1

∞∑
m=−∞

{
2

c
ln
(
ρ1mq/ρ2mq

)
+

4

c

∞∑
v=1

[
K0

(
2πvρ2mq/c

)
−K0

(
2πvρ1mq/c

)]}
. (2.16)

2.3.7 Conductor with Finite Thickness, Width and Length

Similarly, applying the method of images shows that the potential generated by a source

P2 and sink P1 on the surface (z = 0) of a finite conductive plate (0 ≤ x ≤ a/2, 0 ≤ y ≤ b/2

and −c/2 ≤ z ≤ 0) may be represented in terms of a three-dimensional lattice of images, as

shown in Figure 2.8:

f (ρ) =
2∑
p=1

2∑
q=1

∞∑
l=−∞

∞∑
m=−∞

∞∑
n=−∞

 1√
ρ2

2lmpq
+ (nc)2

− 1√
ρ2

1lmpq
+ (nc)2

. (2.17)

Here, j, p, q = 1, 2, l,m = −∞, ..,−1, 0, 1, ..∞ and
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Figure 2.8 Current source at P and three-dimensional lattice of image sources (open circles)

required to satisfy the interface conditions at the boundaries of a plate with finite

thickness c/2, width b/2 and length a/2.

ρjlmpq =

√(
x− (−1)p x′j − la

)2
+
[
y − (−1)q y′j −mb

]2
.

Notice that the structure of the solution reflects the fact that in the x− and y−directions two

infinite sets of images are required, represented by the sums over p and q respectively, whereas

in the z−direction only one infinite image set is required because the source lies at the surface

defined by z = 0. In Fourier Series form,

f (ρ) =
2∑
p=1

2∑
q=1

∞∑
l=−∞

∞∑
m=−∞

{
2

c
ln
(
ρ1lmpq/ρ2lmpq

)
+

+
4

c

∞∑
v=1

[
K0

(
2πvρ2lmpq/c

)
−K0

(
2πvρ1lmpq/c

)]}
. (2.18)

2.4 Experiment

In this section, the validation of computed voltage values, obtained using (2.18) in con-

nection with (2.4), by comparison with experimental measurements on small metal plates is
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described. A co-linear, symmetric, four-point-probe of the kind shown in Figure 2.1 was used.

The probe was constructed by mounting four spring-loaded point contacts in a plastic support

block. The separation of the contacts was measured using digital callipers and the dimensions

of the probe are listed in Table 2.1. Potential drop measurements were made with the probe in

contact with the largest face of six metal plates; three each of aluminium 2024-T3 and spring

steel C1074/75. These were cut from the same aluminium and steel stock and their conductiv-

ity values measured independently by the DCPD technique applied to large sheets of the stock

material, as described in (13). For each of the two metal types, the largest faces of the plates

were nominally 6× 2 cm2, 6× 4 cm2 and 6× 6 cm2. The actual dimensions, given in Table 2.2,

were measured by taking the average of several measurements of each dimension, made with

digital callipers.

Table 2.1 Distance between the outer pair of (current-carrying) probe pins, L, (i.e. the probe

length) and distance between the inner pair of voltage pick-up pins, P .

L (mm) P (mm)

50.88 ± 0.02 20.30 ± 0.02

Table 2.2 Conductivity σ and dimensions, Figure 2.8, of metal plates used in the validation

experiment, whose results are shown in Figures 2.9 and 2.10. Uncertainty in σ is ±
0.04 MS/m (13) and in dimensions is 0.01 mm.

Metal Alloy σ (MS/m) a/2 (mm) b/2 (mm) c/2 (mm)

Aluminum 2024-T3 18.24 60.16 60.70 1.00

18.24 60.06 40.29 1.00

18.24 59.75 20.13 1.00

Spring Steel C1074/75 5.50 60.61 60.22 1.57

5.50 60.80 41.53 1.57

5.50 61.05 20.36 1.57

In the experiment, both the current through the probe and the voltage drop between the

pick-up points must be measured in order to validate the theory. The first can be can be

monitored by measuring the voltage drop across a precision resistor in series with the drive

circuit. The latter can be measured using a high input impedance circuit. Full experimental

details are given in (14), where it is shown that ac and dc measurements and theory give
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identical results when the frequency is below a certain threshold value that depends on the

experimental parameters. In (14), an analytic expression is given for threshold frequency fs

below which the measured PD is real, constant and equal to the dc value for plates that are

’large’ compared with the probe dimensions. A large plate is one whose PD measurements

agree with theory developed for a plate with infinite lateral dimensions. In Table 2.3, the

actual size of a plate needed to satisfy this condition is given to accuracy 1% and 5%. Here, in

the case of the finite (small) plate, an analytic expression for fs is not available, but in general

all ACPD measurements show an fs also exists. Here, low-frequency ac was used rather than

direct current. For all of the small plates, which are the subject of this study, it was verified

experimentally that the measured potential drop did not change over the frequency range 1

to 10 Hz, which implies that fs > 10 Hz in these cases. In addition note that the skin depth

in aluminium and spring steel at 10 Hz is ∼37 mm and ∼6 mm, respectively, and the relative

factors of 37 and 4 times greater than the plate thicknesses which also indicates that the dc

regime is applicable. In each measurement, the probe was centered on the plate and aligned

with the x-axis, Figure 2.8. The theory of equation (2.18) is compared with experimental data

taken on aluminium and steel in Figures 2.9 and 2.10, respectively. In the calculation, there

are 10004 terms in total, (2× 2× (2L+ 1)× (2M + 1)× V , L = 30, M = 20 and V = 1) used

in the summations and the calculated relative accuracy is 1× 10−5. From Figures 2.9 and 2.10

it can be observed that the measured potential drop is smaller in the case of aluminium than

in the case of steel, due to the higher conductivity of aluminium compared with steel. It is

also obvious that the measured potential drop increases as the plate width decreases, due to

the fact that the lines of surface equipotential are forced closer together as the plate becomes

smaller. Very good agreement between theory and experimental data shows that the effect of

the plate edges is accurately represented by the theory.

The greatest contribution to the uncertainty in the potential drop measurements shown in

Figures 2.9 and 2.10 comes from uncertainty in the probe pin positions relative to each other

and the plate edges. This arises due to some lateral play in the pin position which can occur as

the springs are compressed and because of the difficulty in exactly centering the probe on the

test-piece. These effects are small, nonetheless, leading to over-all experimental uncertainty in
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Table 2.3 Plate sizes necessary to obtain 5% and 1% agreement between DC potential drop

voltages calculated for finite and infinite plates.

5% 1%

plate shape P/L a/(2L)

square 1/3 4.0 8.9

5/7 3.7 8.2

9/10 3.2 7.2

long, perpendicular 1/3 2.9 8.9

to probe 5/7 2.6 6.6

9/10 2.4 5.3

b/(2L)

long, parallel to 1/3 3.4 9.3

probe 5/7 2.9 8.2

9/10 2.4 7.0

the measured voltage of around 1%.

2.5 Accuracy of Large-plate Formulas Applied to Small Plates

The simplicity of standard formulas provided for potential drop measurements on large

plates makes it attractive to employ these formulas generally (15). In this section, the accuracy

with which large-plate formulas can be applied to small plates is elucidated in several cases.

First define the percentage difference between the DC theory for large, thin plates, obtained

using equation (2.14), and that for finite plates, obtained using equation (2.18),

% difference =
Vfinite − Vlarge

Vlarge
× 100. (2.19)

In Figures 2.11, 2.12 and 2.13, the percentage difference in DC pick-up voltage, calculated

using theory for finite and infinite plates, is shown as a function of plate size for various ratios

of pick-up length to probe length, P/L. The ratio P/L = 1/3 gives a probe whose four points

are equally spaced. This configuration is commonly adopted in practice. In Figure 2.11 the

plates are square. In Figures 2.12 and 2.13 the plates are long in the dimension perpendicular

and parallel to the line of the probe, respectively. In all cases it is seen that the influence of

the plate edges becomes more important as the pick-up length decreases relative to the probe
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Figure 2.9 Theory, equation (2.18) with (2.4), compared with experimental data measured on

aluminium plates with three different widths, Table 2.2. In the theory the plate

length a/2 is fixed at 60 mm.

length. In other words, the accuracy of the infinite plate theory improves for a given plate size

if the pick-up points are moved closer to the current injection points, rather than adopting an

arrangement in which the four probe points are equally spaced. In Table 2.3, the plate sizes

necessary to achieve 5% and 1% agreement between voltage values calculated using theory for

finite and infinite plates are listed. For square plates, 5% agreement can be obtained with

plates whose sides are only 3 or 4 times as large as the probe length. For 1% agreement,

the plate sides must be approximately 8 times the probe length. For plates which are long

in the dimension parallel to the probe (large a), the results are similar to those for square

plates. For plates which are long in the dimension perpendicular to the probe (large b), side

length a needs to be only 2 or 3 times L for 5% agreement, and between 5 and 9 times L for

1% agreement, depending on the pick-up length. These observations are in agreement with

comments relating to plate thickness measurements made in (15) and serve as a useful guide in

estimating the accuracy of four-point conductivity measurements interpreted with theoretical

formulas developed for large plates.
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Figure 2.10 As for Figure 2.9 but for spring steel plates, Table 2.2

2.6 Conclusion

In this paper, an analytical solution has been presented to model edge effects in DCPD mea-

surements on metal plates with finite thickness. A method-of-images solution converges quickly

for plates somewhat thicker than the probe dimensions. A Fourier series summation, obtained

using expressions originally developed to evaluate lattice sums in solid-state physics (10), con-

verges more quickly for thinner plates and effectively reduces the triple infinite summation that

results from the method-of-images, expression (2.17), to a double infinite summation, (2.18).

The work of this paper focuses on DC potential drop measurements, from which the metal

conductivity can be deduced. A similar theoretical approach can be applied to describe AC

potential drop measurements as indicated in (8), from which the permeability of ferromagnetic

metals can also be deduced (14).
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Figure 2.11 Percentage difference in DC pick-up voltage calculated using theory for finite and

infinite thin plates, as a function of plate size. Plates are square with side length

a/2. Probe length is L and pick-up length is P .

Figure 2.12 As for Figure 2.11 but for thin plates that are long perpendicular to the line of

the probe (large b).
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Figure 2.13 As for Figure 2.11 but for thin plates that are long parallel to the line of the

probe (large a).
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CHAPTER 3. FOUR-POINT PROBE MEASUREMENTS OF DIRECT

CURRENT POTENTIAL DROP ON LAYERED CONDUCTIVE

CYLINDERS

A paper published in The Journal of Measurement Science and Technology

Yi Lu and John R. Bowler

3.1 Abstract

We have determined the steady state electric field due to direct current flowing via point

contacts at the cylindrical surface of a uniformly layered conductive rod of finite length. The

solution allows one to use four-point probe potential drop measurements to estimate the con-

ductivity or thickness of the layer assuming the other parameters are known. The electrical

potential in the rod has a zero radial derivative at its surface except at the injection and ex-

tractions points. This means that the required solution can be expressed in terms of a Green’s

function satisfying a Neumann boundary condition. Four point measurements have been made

to demonstrate the validity of theoretical results.

3.2 Background and Problem Description

We have determined the electrical potential due to a steady current flowing between contact

electrodes at the surface of a cylindrical rod of finite length having a uniform surface layer, a

homogeneous conductive rod and tube being special cases (1; 2). The results can be used to

interpret four point probe potential drop measurements. A typical industrial application is the

measurement of the clad thickness on titanium clad copper rods used to carry large electric

currents in harsh environments. In a common type of four point probe, current is passed
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through a specimen via a pair of spring-loaded pins while the potential drop is measured

between a second pair of pin electrodes. The electrodes are often co-linear or can be placed at

the corners of a rectangle. In whatever arrangement is chosen, the effect of contact resistance

is minimized by connecting the voltage pick-up pins to a relatively high impedance instrument

for measuring the potential drop accurately.

In using four point probes for electrical conductivity measurement, a common approach is to

work with an elementary formula to compute the conductivity and use a correction to account

geometrical factors such as the edge effects of blocks (3; 4; 5) or disks (6; 7; 8), sheets (9) or the

influence of the surface curvature on the potential at cylindrical surfaces (10; 11). Although

most measurements use direct current, tests can also be performed by injecting alternating

current at selected frequencies and the observations interpreted using theoretical predictions of

the time harmonic potential. To get a basic solution for an alternating current potential drop

(ACPD), closed-form analytical expressions have been derived for the electric field distribution

in a conductive plate due to alternating current injected at the surface (12; 13; 14). In addition

the four point probe potential drop has been found for transient current injection (15). An

analytical expression for the alternating electric field inside a circular metal disk has also been

derived, source and sink electrodes being located on opposite faces of the disk (16). Four-point

measurements have also been widely used in the semiconductor industry to determine the

electrical conductivity of semiconductor wafers (3), and to measure magnetoresistance (MA) as

well as resistance area product (RA) of planar magnetic tunnel junction stacks (17). In addition,

a new microscale Hall effect measurement method for fast characterization of semiconductor

thin film using colinear four-point probes has been developed (18). Recently, microscopic

measurements have become possible with the advent of micron scale probes for the study of

local material property variations (19; 20; 21). Other applications of four point measurement

are aimed at monitoring changes in the condition of metals due to heat treatment (22; 23; 24)

or to estimating the dimensions of cracks (25; 26).

For cases where direct current is injected, the electric potential in a piecewise uniform

electrical conductor satisfies the Laplace equation and has zero normal gradient at every point

on the interior of its outer surface, S0, except where current is injected or extracted. Here we
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consider current contacts on the curved surface of a circular cylinder. By approximating the

electrode contact regions as points on the surface, the solution can be represented conveniently

in terms of a suitable Green’s kernel, G(r|r′), that satisfies a Neumann boundary condition

at the outer surface. This means that ∂G/∂n = 0 on S0 where n is a local coordinate in the

direction of an outward normal.

The seminal work on the development of Green’s kernels in cylindrical and spherical coor-

dinates is that of Dougall (27) whose contribution on Dirichlet kernels was highlighted in the

text on Bessel functions by Gray, Mathews and MacRobert (28). Much later, the static Neu-

mann kernel for a finite cylinder was determined by Murashima (29) and used by Yamashita,

Nishii and Kurihara (1) for computing resistivity correction factors for the four point probe

method. Recently, the approach has been extended to provide a four point probe theory for

measurements on tubes (2).

Figure 3.1 Four-point probe on a cylindrical rod with a uniform layer.

In Murashima’s analysis, the solution is expressed in terms of Bessel functions of the

first kind in which the Neumann boundary condition on the cylindrical surface, radius b, is

satisfied using values of the separation parameter κ that are the roots of J ′m(κb) = 0 for

m = 0, 1, 2 . . . (1), where J ′m(κb) =
dJm(κρ)

dρ

∣∣∣∣
ρ=b

. An alternative is to write the solution in

terms of associated Bessel functions (30). Here we consider a layered rod by generalizing the
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Murashima kernel to the case in which we have a homogeneous circularly cylindrical core of

arbitrary conductivity surrounded by a uniform homogeneous layer as, shown in Figure 3.1.

3.3 Potential in a Layered Cylinder

A brief statement of the mathematical problem that we consider is as follows. The potential

V (ρ, φ, z) in a conductive circular cylinder of outer radius b, length c, having a concentric core

radius a satisfies the Laplace equation,

∇2V = 0. (3.1)

At the interface between the core and the layer, the potential is continuous,

V (a−, φ, z) = V (a+, φ, z), (3.2)

as is the normal component of the current density,

σ1
∂V

∂ρ

∣∣∣∣
ρ=a−

= σ2
∂V

∂ρ

∣∣∣∣
ρ=a+

, (3.3)

where σ1 is the conductivity of the core and σ2 that of the outer layer and ± subscripts, refer

to the limit of approach to the value a from a greater or lesser value, respectively. At the ends

of the cylinder, the normal component of the current density is zero, hence,

∂V

∂z

∣∣∣∣
z=± c

2

= 0. (3.4)

The radial current density over most of the outer surface is zero except for the points of current

injection, r′1 = {b−, φ1, z1} and extraction, r′2 = {b−, φ2, z2}, denoted by P1 and P2 respectively

in Figure 3.1. Hence the normal gradient of the potential at the outer cylindrical surface can

be expressed

∂V

∂ρ

∣∣∣∣
ρ=b−

=
I

bσ2
[δ(z − z1)δ(φ− φ1)− δ(z − z2)δ(φ− φ2)]. (3.5)

One can also consider current injection at the end of the cylinder but this case will not be

examined further.

The steady state potential is conveniently expressed in terms of a Neumann kernel,

G(ρ, φ, z|ρ′, φ′, z′), which is a solution of

∇2G = −δ(ρ− ρ′)1

ρ
δ(φ− φ′)δ(z − z′), (3.6)



www.manaraa.com

33

satisfying the continuity conditions

G(a−, φ, z|ρ′, φ′, z′) = G(a+, φ, z|ρ′, φ′, z′), (3.7)

and

σ1
∂G

∂ρ

∣∣∣∣
ρ=a−

= σ2
∂G

∂ρ

∣∣∣∣
ρ=a+

, (3.8)

at the interface between the core and the layer. At the ends of the cylinder

∣∣∣∣∂G∂z
∣∣∣∣
z=± c

2

= β, (3.9)

where β is a constant which need not to be zero because it vanishes in a solution for two

injection points of opposite sign. At the outer cylindrical surface, the Neumann boundary

condition

∂G

∂ρ

∣∣∣∣
ρ=b−

= 0, (3.10)

is imposed.

By applying Green’s second theorem to the region bounded by the surface S2 enclosing the

layer we get

V (r) =

∫
S2

G(r|r′)∂V (r′)

∂n′
− V (r′)

∂G(r|r′)
∂n′

dS′. (3.11)

A similar integral expression gives the potential in the core region. Using the boundary and

interface conditions, one can show that the potential at any point in the conductor is given by

V (r) =
I

bσ2
[G(r|r′1)−G(r|r′2)], (3.12)

since equation (3.5) provides the only locations at which the normal gradient at the bounding

surface of the conductive cylinder is non-vanishing. Hence the potential difference between two

voltage electrode contact points on the surface of the cylinder, denoted by Q1 and Q2 in Figure

3.1, is

∆V =
I

bσ2
[G(r1|r′1)−G(r2|r′1)−G(r1|r′2) +G(r2|r′2)]. (3.13)

The problem of predicting the potential thus reduces to one of finding the Neumann kernel,

G(r|r′).



www.manaraa.com

34

3.4 Derivation of the Neumann Kernel

3.4.1 Elementary Solutions

Initially, we consider the case where the electrical conductivity s(ρ), normalized by dividing

by a reference conductivity, is an arbitrary function of of the radial coordinate. Later we revert

to a piecewise constant conductivity. The electrostatic potential is, in general, a solution of

∇ ·
[
s(ρ)∇V (ρ, φ, z)

]
= 0. (3.14)

Separation of variables in this equation gives the elementary solutions from which one can draw

some general conclusions about the orthogonality of the radially dependent eigenfunctions. We

proceed by defining the elementary product solution

V (ρ, φ, z) = R (ρ) Φ (φ)Z (z) , (3.15)

substituting into (3.14) and dividing the resulting equation by s(ρ)V (ρ, φ, z) to give

1

Rρs

∂

∂ρ

[
sρ
∂R

∂ρ

]
+

1

Φρ2

∂2Φ

∂φ2
+

1

Z

∂2Z

∂z2
= 0. (3.16)

This can be decomposed by equating the φ and z dependent terms to suitable separation

parameters −m2 and κ2 respectively. The azimuthal dependence is thereby shown to be a

solution of

d2Φ

dφ2
+m2Φ = 0, (3.17)

where the function Φ(φ) is periodic with a period 2π. We choose an even elementary solution

cos (mφ), in which m = 0, 1, 2, .... The function of the axial variable is a solution of

d2Z

dz2
− κ2Z = 0. (3.18)

and the function of the radial variable satisfies

(
d

dρ
sρ

d

dρ
−m2 s

ρ
+ κ2ρs

)
R = 0. (3.19)

This equation is of the Sturm-Liouville type and as such its solutions can be expressed in terms

of a set of continuous eigenfunctions provided the function s(ρ) is piecewise continuous (31).
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Furthermore these eigenfunctions are orthogonal, although, in fact, there are only a few cases

for which they may be determined analytically, the case where s(ρ) is piecewise constant being

one of them.

We consider a uniform layer over a uniform circular core and normalize the conductivity

variation by dividing by the conductivity of the region into which current is injected. Writing

s1 = σ1/σ2, the normalized conductivity is thereby defined by

s(ρ) =


s1 0 ≤ ρ < a

1 a < ρ ≤ b.
(3.20)

and equation (3.19) can be expressed for a piecewise constant region as[
ρ2 d

2

dρ2
+ ρ

d

dρ
+
(
κ2ρ2 −m2

)]
R = 0. (3.21)

This equation is satisfied by a linear combination of Bessel functions of the first and second

kinds, Jm(κρ) and Ym(κρ).

The core region solution does not include a term containing Ym(κρ) since it is singular at

ρ = 0. Therefore the required solution of equation (3.21) for a piecewise constant conductivity

has the form

R(ρ) =


Jm(κρ) 0 ≤ ρ < a

P (κ)Jm(κρ) +Q(κ)Ym(κρ) a < ρ ≤ b.

(3.22)

The coefficients P (κ) and Q(κ) are determined using the continuity conditions that apply at

ρ = a, equations (3.2) and (3.3), from which we find

P (κ) =
πκa

2σ2

[
σ2Jm (κa)Y ′m (κa)− σ1J

′
m (κa)Ym (κa)

]
(3.23)

and

Q(κ) =
πκa

2σ2
(σ1 − σ2) Jm (κa) J ′m (κa) . (3.24)

In the case where σ1 = σ2, then Q = 0 and the bracketed term in equation (3.23) becomes a

Wronskian relation (32),

Jm+1 (z)Ym (z)− Jm (z)Ym+1 (z) =
2

πz
, (3.25)
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which can be evaluated to show that P = 1. Thus as the conductivity tends towards uniformity,

the core and layer solutions in equation (3.22) merge into one, as they should. In general,

however, discrete eigenvalues κmn are determined from the roots of

P (κ)J ′m(κb) +Q(κ)Y ′m(κb) = 0, (3.26)

to ensure that the Neumann condition, equation (3.10), is satisfied at the outer cylindrical

surface. This yields an infinite series of roots, κmn indexed by n = 1, 2, 3 . . . at each order m

and a corresponding set of eigenfunctions

Rmn(ρ) =


Jm(κmnρ) 0 ≤ ρ < a

P (κmn)Jm(κmnρ) +Q(κmn)Ym(κmnρ) a < ρ ≤ b.

(3.27)

In one notable case, the first root at zero order, we have κ01 = 0. The zero root occurs

because lim
κ01→0

P (κ01)J ′0 (κ01ρ) +Q(κ01)Y ′0 (κ01ρ)→ 0. Then, for the core and layer regions, we

find respectively that lim
κ01→0

J0 (κ01ρ) → 1, lim
κ01→0

P (κ01)J0 (κ01ρ) + Q(κ01)Y0 (κ01ρ) → 1, and

R01(ρ) = 1 for 0 ≤ ρ ≤ b.

3.4.2 Orthonormal Set for the Radial Dependence

The fact that equation (3.19) is of the Sturm-Liouville type with a Hermitian operator

means that continuous solutions exist for a piecewise continuous conductivity that may possess

any number of discontinuities (33). All permissible solutions can be expanded in terms of an or-

thonormal set of continuous eigenfunctions, written as fmn(ρ) = cmnRmn(ρ), the normalization

coefficients, cmn, being derived as follows.

We use a set of integrals that are valid for any two cylinder Bessel functions, (Cm and C̄m

which denote Jm or Ym) (34):∫ z

Cm (kz) C̄m (lz) zdz

=



z

k2 − l2
[
kC̄m (lz) Cm+1 (kz)− lCm (kz) C̄m+1 (lz)

]
k 6= l

z2

4

[
2Cm (kz) C̄m (kz)− Cm−1 (kz) C̄m+1 (kz)− Cm+1 (kz) C̄m−1 (kz)

]
k = l.

(3.28)
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Based on the above integral properties, and the need to include a weight function w(ρ) = ρs(ρ)

in the orthogonality relationship according to the Sturm-Liouville analysis (31), we can derive

the normalization coefficients cmn for the orthonormal eigenfunctions in equation (3.34) from∫ b

0
Rmn (ρ)Rml (ρ) s (ρ) ρdρ = s1

∫ a

0
Jm (κmnρ)Jm (κm`ρ) ρdρ

+

∫ b

a
[P (κmn)Jm(κmnρ)+Q(κmn)Ym(κmnρ)] [P (κm`)Jm(κm`ρ)+Q(κm`)Ym(κm`ρ)] ρdρ

=


0 n 6= `

(s1 − 1)Amn +Bmn
2κ2

mn

n = `.

(3.29)

Here,

Amn =
(
κ2
mna

2 −m2
)
J2
m (κmna)− s1κ

2
mna

2 [J ′m (κmna)
]2

(3.30)

and

Bmn =
(
κ2
mnb

2 −m2
)

[P (κmn)Jm (κmnb) +Q(κmn)Ym (κmnb)]
2 . (3.31)

Hence

cmn =

√
2κmn√

(s1 − 1)Amn +Bmn
. (3.32)

We can now write an arbitrary solution Fm(ρ) of (3.19) as

Fm(ρ) =
∞∑
n=0

Cmnfmn(ρ). (3.33)

and determine the coefficients Cmn by applying∫ b

0
fmn(ρ)fm`(ρ)s(ρ)ρ dρ = δn` (3.34)

defined with respect to a weight function s(ρ)ρ, identified according the the general theory (31)

from the third term in (3.19) , where s(ρ) is given by (3.20) in the present case and δn` is a

Kronecker delta; unity if ` = n and zero otherwise.

3.4.3 Green’s Function

The orthogonality property allows one to expand the radial delta function to give a com-

pleteness relationship

δ (ρ− ρ′)
ρ′

=
∞∑
n=1

fmn (ρ)fmn
(
ρ′
)
. (3.35)
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For the azimuthal dependence, we use another completeness relationship

δ
(
φ− φ′

)
=

1

2π

∞∑
m=0

εm cos[m(φ− φ′)] (3.36)

in which εm = 1 for m = 0 and εm = 2 otherwise. By expressing the Green’s function as

G
(
ρ, φ, z|ρ′, φ′, z′

)
=

1

2π

∞∑
m=0

εm cos
[
m
(
φ−φ′

)] ∞∑
n=1

fmn (ρ)fmn
(
ρ′
)
gmn

(
z|z′

)
, (3.37)

and substituting (3.35) -(3.37) into (3.6), we find that the z dependence is a solution of

d2gmn (z|z′)
dz2

− κ2
mngmn

(
z|z′

)
= −δ

(
z − z′

)
, (3.38)

satisfying equation (3.9) with β = 0. The required function has the form E± cosh
[
κmn

(
c
2 ∓ z

)]
where the E± are constants and the ∓ sign depends on whether z > z′ or z < z′ respectively.

The coefficients are found using a standard procedure for a Green function in one dimension.

By integrating equation (3.38) between z′ − ε and z′ + ε and taking the limit as ε→ 0 we can

get

dgmn (z|z′)
dz

∣∣∣∣
z′+

− dgmn (z|z′)
dz

∣∣∣∣
z′−

= −1, (3.39)

integrating a second time and taking the limit gives

gmn
(
z|z′

)∣∣
z′+
− gmn

(
z|z′

)∣∣
z′−

= 0. (3.40)

Characteristically, the one dimensional Green function has a jump in the first derivative of −1

and its value is continuous. By using equations (3.39) and (3.40) we find that

gmn
(
z|z′

)
=

cosh
[
κmn

(
c
2 − z>

)]
cosh

[
κmn

(
c
2 + z<

)]
κmnsinh (κmnc)

, (3.41)

where z> is the greater and z< the lesser of z and z′. For the case where κ01 = 0, the solution,

g01 (z|z′) = − |z − z′| /2 satisfies the Neumann boundary condition at the ends of the cylinder,

equation (3.9), with β non-zero but with two singular sources of opposite polarity, as with the

four-point probe, the normal gradient at the surfaces z = ± c
2 are zero.

Based on the above analysis, it is a relatively simple step to define the Neumann Green’s

function for a point source in a layered cylinder. This has the form

G
(
ρ, φ, z|ρ′, φ′, z′

)
=
−|z−z′| f01 (ρ) f01 (ρ′)

4π
+

1

2π

∞∑
n=2

f0n (ρ) f0n
(
ρ′
)
g0n

(
z|z′

)
+

1

π

∞∑
m=1

cos
[
m
(
φ− φ′

)] ∞∑
n=1

fmn (ρ) fmn
(
ρ′
)
gmn

(
z|z′

)
. (3.42)
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This formula is exact for an arbitrary source and field point. Hence equation (3.13) is applicable

for arbitrary electrode placement.

3.5 Two Special Cases

In many applications, the probe is located on the outer surface of the layered cylinder which

means the source point is at the outer surface of the layer, as shown in Figure 3.1. Two special

cases arise as follows.

3.5.1 Homogeneous Cylinder

When a = 0 or σ1 = σ2, the two-layered cylinder becomes a homogeneous one and s1 =

σ1/σ2 = 1. In which case equation (3.23) simplifies using the Wronskian (4.17) to give P = 1,

Q = 0 from (3.24). Then Rmn(ρ) = Jm(κmnρ) and the fmn (x) functions in the Neumann

Green’s Function simplify to give:

fmn (x) =



√
2

b
m = 0, n = 1

√
2

bJ0 (κ0nb)
J0 (κ0nx) m = 0, n > 1

√
2κmn√

(κ2
mnb

2 −m2)Jm (κmnb)
Jm (κmnx) m > 0, n ≥ 1.

(3.43)

3.5.2 Hollow Cylinder

Similarly when σ1 = 0, a layered cylinder becomes a hollow one, Rmn(ρ) = P (κmn)Jm (κmnρ)

+Q(κmn)Ym (κmnρ) and s1 = σ1/σ2 = 0. In which case equation (3.23) simplifies to give

P (κmn) =
πκmna

2
Jm (κmna)Y ′m (κmna) , (3.44)

and (3.24) reduces to

Q(κmn) = −πκmna
2

Jm (κmna) J ′m (κmna) . (3.45)
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In the Neumann Green’s Function, the fmn (x) become

fmn (x)=



√
2√

b2 − a2
m = 0, n = 1

√
2√

b2R2
0n (b)−a2J2

0 (κ0na)
R0n (x) m = 0, n > 1

√
2κmn√

(κ2
mnb

2−m2)R2
mn (b)−(κ2

mna
2−m2) J2

m (κmna)
Rmn(x) m > 0, n ≥ 1.

(3.46)

3.6 Experiments and Discussion

The above theory is applicable for arbitrary relative placement of the four probe points on

the convex surface of the cylinder. Two different four-point probes are in general use, one with

rectangular arrangement of contact points and one in which the contact points are co-linear. In

this section, we consider a collinear probe, with pins aligned parallel to the axis of the cylinder.

In the experiments, both the current through the probe and the voltage drop between the pick-

up points are measured in order to validate the theory. The first is monitored by measuring the

potential drop across a precision resistor in series with the drive circuit. Voltage is measured

using a SR830 DSP lock-in amplifier. More experimental details are given in (35; 36).

The theoretical expression for the potential drop at a layered conductive cylinder has been

validated experimentally. Two four-point probes with co-linear pins are used. The four pins

are mounted in a plastic support block and the separations of the contacts are measured using

a traveling microscope. The dimensions of the probes are listed in Table 3.1 as shown in Figure

3.2.

In the experiments, first, a copper rod and a titanium alloy rod are measured to confirm

the predictions for homogeneous rods. We also made measurements on an inconel 600 tube

and a titanium clad copper rod for the layered case. The latter is manufactured to act as a bus

bar for carrying high current in a hostile environment.

The copper rod has the same conductivity as the copper core in the titanium clad copper

rod. The dimensions of the titanium alloy rod are measured using a traveling microscope and
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Figure 3.2 Schematic showing the arrangement of a four-point probe.

Table 3.1 Probe parameters in the experiments. Uncertainty 0.02 mm.

Probe S (mm) p (mm) q (mm)

I 9.00 -3.06 3.00

II 20.14 -17.76 17.34

others are measured with a digital calliper. The conductivities of the copper rod and the

titanium alloy rod are measured independently using a two-point DCPD method (37) which

gives a more accurate result. The conductivities of the inconel 600 tube and the outer layer of

the titanium clad copper rod are provided by the test-piece vendor. The test-piece parameters

are shown in Table 3.2.

3.6.1 Homogeneous Cylinder

In this experiment, the copper rod is measured using four-point Probe I, which is put at the

center of the rod, and the measured and calculated DC pick-up voltages are listed in Table 3.3.

The latter is calculated using equations (3.13), (3.42) and (3.43), which is in good agreement

with the experiment. Figure 3.3 shows the calculated potential drop decrease as the radius of

Table 3.2 Test-piece parameters in the experiments.

Metal 2a (mm) σ1 (MS/m) 2b (mm) σ2 (MS/m) c (mm)

Copper Rod N/A N/A 15.96±0.01 57.23 200

Ti-6Al-4V N/A N/A 12.63±0.01 0.594 307

Inconel 600 Tube 15.75±0.01 N/A 19.05±0.01 0.986 200

Ti clad Cu Rod 15.54±0.02 57.23 19.78±0.02 1.798 200
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Table 3.3 Calculated and measured DC pick-up voltages on test-pieces.

Test-piece Calculated (V) Measured (V) Error (%)

Copper Rod 8.723×10−7 8.834×10−7 1.26

Inconel 600 Tube 1.488×10−4 1.527×10−4 2.55

Ti clad Cu Rod 2.883×10−5 2.927×10−5 1.50

the copper rod increases.

Figure 3.3 Calculated DC pick-up voltage (V) by a collinear four-point Probe I on a homo-

geneous copper rod, as a function of the radius of the rod.

A titanium alloy rod has been measured with the Probe II with the probe at various

positions on the cylinder relative to the end of the rod. The experimental data are compared

with the theory curve in Figure 3.4. In the figure, an obvious edge effect can be observed and

the good agreement shows that the edge effect can be accurately predicted by the theory.

3.6.2 Hollow Cylinder

A homogeneous inconel 600 tube is measured with the Probe I to verify the tube predictions.

In the experiment, the probe is placed at the center of tube with the line of the probe parallel

to the tube axis and the potential drop between the two inner pins is measured to be compared

with the theory. The tube’s dimensions and conductivity are given in Table 3.2. The potential

drop is calculated by equations (3.13), (3.42) and (3.46), which shows an agreement with the
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Figure 3.4 DC potential drop (V) measured using collinear four-point Probe II on a homo-

geneous titanium alloy rod (crosses), compared with the theory (solid line), as a

function of the probe position.

measurement as shown in Table 3.3. If the measurement position, the outer radius and length

of the specimen are kept fixed, the voltage increases significantly as the tube wall thickness

decreases, particularly below about 1mm, as shown in Figure 3.5. This means this method is

very sensitive and can be used to monitor the wall thicknesses of thin tubes.

3.6.3 Layered Cylinder

In this experiment, a titanium clad copper rod is measured by placing the Probe II at the

center, parallel to the axis of the rod. The dimension and conductivity parameters are listed

in Table 3.2. The measured and calculated potential drops are given in Table 3.3, which shows

a small difference between the theory and experiment.

Similarly, if keeping the dimension of the copper rod fixed and just changing the thickness

of the titanium layer, as shown in Figure 3.6, the voltage of the Probe II increases with the

thickness of titanium layer.

In this way, we can monitor the change of thickness or conductivity for the outer metal

layer.
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Figure 3.5 Calculated pick-up voltage (V) of collinear four-point Probe I on an inconel 600

tube (the outer radius and length are fixed), compared with the rod theory (filled

diamond marker), as a function of the wall thickness.

3.7 Conclusion

In this paper, an analytical solution is presented to model the electric field of a uniform-

layered conductive cylinder with finite length. Green’s function satisfying Neumann boundary

conditions is applied to derive the theory solution. And a group of four-point DCPD experi-

ments are used to verify the theory solution, showing good agreements between the theory and

experiment. These analytic solutions offer a non-destructive determination of the thickness or

electrical conductivity of the layered cylinder if the other parameters are given. However, with

more than four electrodes or by connecting electrodes in different configurations (38) one can

determine both thickness and conductivity. Because DCPD method has the advantage of being

independent of the magnetic permeability of the conductor, this technique can be applied to

ferrous metals, while eddy current measurement can not (39; 40). Besides, this method can also

work well for low conductivity materials such as semiconductors (41). In future, the analysis

of four-point ACPD on a uniform-layered metal cylinder will be examined.
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Figure 3.6 Calculated pick-up voltage (V) of the Probe II on a titanium clad copper rod (the

radius of copper is fixed), compared with the rod theory (filled diamond marker),

as a function of the thickness of titanium.
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CHAPTER 4. AN ANALYTICAL MODEL OF A FERRITE-CORED

INDUCTOR USED AS AN EDDY CURRENT PROBE

A paper published in The Journal of Applied Physics

Yi Lu, John R. Bowler and Theodoros P. Theodoulidis

4.1 Abstract

An analytical model of an axisymmetric eddy current ferrite-cored probe above a multi-

layered conducting half-space has been developed using a procedure in which the domain of

the problem is truncated radially. This means that solutions can be expressed in the form of

generalized Fourier-Bessel series. The expansion coefficients are found by matching the field

across the interfaces between subregions of the problem. Initially the magnetic vector potential

of a simple circular current filament is expanded in a series form. The solution is then modified

to accommodate an infinitely long coaxial ferrite core and the principle of superposition is

invoked to derive a coil field from the filament field in the presence of the core. Next we

consider a semi-infinite core and then one of finite length. Finally the effects of a multi-layered

conductor are included. Numerical predictions of probe impedance have been compared with

experimental data showing excellent agreement.

4.2 Introduction

Eddy current nondestructive testing is widely used for the detection of surface and sub-

surface flaws in conductive materials. The technique can also provide a means of measuring

the conductivity of non-ferrous materials and to determine the thickness and conductivity of

uniform metal layers (1). A ferrite core in an eddy current probe usually improves the signal-
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to-noise ratio and resolution of defect detection, especially at a relative low working frequency

(2). Compared with air-cored probes, the ferrite cored probe usually has a better performance,

particular for the detection and characterization of deep surface flaws (3).

The use of an air-cored coil above a layered half space has been studied extensively (4; 5;

6; 1) due to the fact that the coil characteristics are relative easy to predict theoretically and

measurements can be readily interpreted in terms of a well known model (7). Although there

are a number of numerical methods available to predict ferrite cored probe fields (8; 9), it is of

value to have instead an accurate analytical or semi-analytical method for finding the field and

impedance of such probes, especially one that is relatively simple and easy to implement. This

is possible for an axially symmetric ferrite cored probe whose core is a finite circular cylinder

with linear material properties. Based on earlier analytical studies (10; 11; 12), expressions for

the impedance and field of such a probe over a layered conductor have been developed by using

the truncated region eigenfunction expansion (TREE) method (13). By radially truncating the

domain of the problem, solutions can be developed in the form of series rather than by using

integral forms. Imposing a boundary condition such as a zero tangential electric field on the

truncation boundary, means that errors are introduced compared with the unbounded domain

solution but the truncation errors can be made as small as desired by controlling the radius

of the truncation boundary. The positive benefit of truncation is that it leads to a natural

method of creating a discrete system of equations to solve for the series coefficients and thereby

determine the probe field.

Integral forms involving Bessel functions of the first and second kinds can be used to repre-

sent the fields in the different strata shown in Figure 4.1, including those containing the ferrite

core. However, in order to satisfy the field continuity conditions in an unbounded domain at

planes through the ends of the ferrite cylinder, integral equations arise. Typically these would

be solved using numerical schemes but a more natural approach is via a series solution that

satisfies the field equations, albeit in a radially truncated domain. Rather than making a direct

assault on the full truncated domain problem, as previously (13), the present development is

incremental, proceeding via intermediate results that are useful in themselves. The approach

provides insight into the way components of the problem introduced at different stages of de-
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Figure 4.1 An axially symmetric ferrite-cored probe above a multi-layered conductive half

space.

velopment are related in the end result. Starting with the field of a circular current filament

in a radially truncated domain, we next construct a solution for a filament and a rectangular

cross-section coil with an infinitely long circularly cylindrical ferrite core. Then deduce the field

and impedance of a probe with finite length core. In constructing the finite core solution, we

introduce reflection and transmission coefficient matrices that account for the core end effects.

Finally the effect of a multi-layered conductor below the probe is taken into account.

4.3 Filament and Coil Field

4.3.1 Filament

It is helpful to compare an expression for the filament field in free space with that in a

radially truncated domain in order to clarify the relationship between the two types of solution.

In the quasi-static limit, the magnetic vector potential of a circular filament in the plane z = z0

carrying a current I in an unbounded nonconducting space is a solution of a vector Laplace

equation in two dimensions, having the form of an inverse Hankel transform,

◦
Aφ (ρ, z) =

∫ ∞
0

f(κ)J1 (κρ)e−κ|z−z0| κdκ. (4.1)
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This expression takes account of the fact that the azimuthal electric field is continuous at z = z0,

a condition we write as [Eφ]z0 = Eφ(ρ, z0+)−Eφ(ρ, z0−) = 0. Subscripts ± refer to the limit of

approach, in this case to z0, from above and below respectively. The radial magnetic field on

the other hand is discontinuous at z = z0, the discontinuity being written [Hρ]z0 = Iδ(ρ− ρ0).

By expressing this as

∂
◦
Aφ
∂z

∣∣∣∣∣∣
z0+

− ∂
◦
Aφ
∂z

∣∣∣∣∣∣
z0−

= −µ0Iδ(ρ− ρ0), (4.2)

and using the Hankel transform, one finds that f (κ) = µ0Iρ0
2κ J1 (κρ0) and that the vector

potential for a circular current filament is

◦
Aφ (ρ, z) =

µ0Iρ0

2

∫ ∞
0

J1 (κρ)J1 (κρ0) e−κ|z−z0|dκ. (4.3)

To find the equivalent expression for a radially truncated region radius b, using the TREE

approach, assuming the tangential electric field vanishes on the truncation boundary, we express

the vector potential as a Fourier-Bessel series,

◦
Aφ (ρ, z) =

∞∑
i=1

ciJ1 (κiρ) e−κi|z−z0|, (4.4)

where κi, i = 1, 2 . . .∞ denotes the positive zeros of J1(κib) = 0. Using equation (4.2) and

the orthogonality properties of the Bessel function J1 (κiρ) (14; 15), equation (4.62) of the

Appendix, one finds that

◦
Aφ (ρ, z) =

µ0Iρ0

b2

∞∑
i=1

J1 (κiρ) J1 (κiρ0)

κi[J0 (κib)]2
e−κi|z−z0|

= µ0I

〈
J1 (κρ)

∣∣∣∣12κ−1e−κ|z−z0|
◦
A

∣∣∣∣ ρ0J1 (κρ0)

〉
. (4.5)

The vector Dirac notation, considered from right to left, consist of a column vector multiplied

by a matrix and by a row vector forming a scalar product. In general, this form represents a

double summation but the main intension is to represent, in a clear symbolic way, the cross

coupling between source and field vectors at horizontal planes due to the end effects of a ferrite

core. However, in this case the matrix is diagonal and therefore only one summation is needed.

The matrix includes the z-dependence of the vector potential as well as the term

◦
A = C−1, (4.6)
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where C = b
2 [J0(κρ)]2 is defined in terms of the orthogonality properties of the Bessel functions

as shown in Appendix A. Usually only 30 terms are used in the series for the calculation in air,

for example, at ρ = 1.5ρ0, z = ρ0 and z0 = 0, equation (4.4) gives a relative convergence error

of 0.003% and a truncation error of about 0.15% with b = 15ρ0. Incidentally, it is of interest to

note that as b→∞, the summation of equation (4.5) becomes equivalent to the integral form

equation (4.3) in the limit.

4.3.2 Coil Field and Impedance

Figure 4.2 Air-cored coil of rectangular cross section.

For a coil cross section with a constant width, r2 − r1, finite length z2 − z1 and having N

turns, Figure 4.2, the factor ν = N/[(r2 − r1) (z2 − z1)] is the coil turns density. The magnetic

vector potential A (ρ, z) , of such a coil is found by approximating the current density in the

coil as J = νIaφ and integrating the filament potential over the cross-sectional area to give

A (ρ, z) = ν

∫ z2

z1

∫ r2

r1

◦
Aφ (ρ, z) dρ0dz0

=
µ0Iν

2

〈
J1 (κρ )

∣∣∣∣κ−4
[
2I− e−κ(z−z1) − eκ(z−z2)

] ◦
A

∣∣∣∣χ (κr1,κr2)

〉
, (4.7)

where

χ (s1, s2) =

∫ s2

s1
xJ1 (x) dx, (4.8)

which can be evaluated in terms of Struve and Bessel functions(16). The complex power, I2Z0

where Z0 is the coil impedance, is given by

I2Z0 = −
∫

Ω0

E (r) · J (r) dr, (4.9)
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where Ω0 is the coil region and ohmic losses are omitted. In this region, E is the electrical

field and the current density J = νIaφ. Expressing the coil impedance in terms of the vector

potential gives

Z0 =
2πων

I

∫ z2

z1

∫ r2

r1
A (ρ, z) ρdρdz

= 2πωµ0ν
2〈

χ (κr1,κr2)

∣∣∣∣κ−7
[
(z2 − z1)κ− I + e−κ(z2−z1)

] ◦
A

∣∣∣∣χ (κr1,κr2)

〉
, (4.10)

which is purely imaginary and gives the self-inductance of the coil from Z0 = ωL0.

4.4 Infinite Core

An infinite, circularly cylindrical, lossless, linear ferrite core, radius a, encircled by a coaxial

current filament, Figure 4.3, gives rise to a vector potential of the form

Figure 4.3 Filamentary coil with infinite long cylindrical ferrite core.

Aφ (ρ, z) = µ0Iρ0

∞∑
i=1

Ψ1 (qiρ)
e−qi|z−z0|

2qi
AiF1 (qiρ0)

= µ0I

〈
Ψ1 (qρ)

∣∣∣∣12q−1e−q|z−z0|A

∣∣∣∣ ρ0F1 (qρ0)

〉
, (4.11)

where

Ψn (qiρ) =


µrJn (qiρ) (0 ≤ ρ ≤ a)

Fn (qiρ) (a < ρ ≤ b)
, (4.12)

and F1 (qρ) is defined according to

Fn (qρ) = Ac (qa) Jn (qρ)−Bc (qa)Yn (qρ) , (4.13)
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with n = 0, 1. To ensure Aφ(b, z) = 0, we define the qi as the positive roots of F1 (qib) = 0.

Then from the continuity of Bρ and Hz at the ferrite core surface, at ρ = a, it is found that

Ac (qia) =
πqia

2
[µrJ1 (qia)Y0 (qia)− J0 (qia)Y1 (qia)] (4.14)

and

Bc (qia) =
πqia

2
(µr − 1) J0 (qia) J1 (qia) . (4.15)

The diagonal matrix A in (4.11), is determined by the discontinuity in the magnetic field at

the plane z = z0 of the filament, which, we recall, can be written [Hρ]z0 = Iδ (ρ− ρ0). As in

the absence of the core, we use the discontinuity and the orthogonality properties of the radial

eigenfunctions to define the coefficient matrix. In this case,

A = D−1, (4.16)

where D is given by equation (4.63). For µr = 1 (air-cored case), the bracketed term in

equation (4.14) become a Wronskian relation (15):

Jm+1 (z)Ym (z)− Jm (z)Ym+1 (z) =
2

πz
. (4.17)

Then Ac = 1, Bc = 0, Fn (qρ) = Jn (qρ), q = κ, A =
◦
A and equation (4.11) reduces to

equation (4.5), as it should.

The magnetic vector potential A (ρ, z) in the region occupied by the turns of a rectangular

cross-section circular coil is given by integrating with respect to the source coordinates over

the coil cross-section, Figure 4.4, as in equation (4.7), to give

A (ρ, z) =
µ0Iν

2

〈
F1 (qρ)

∣∣∣q−4
[
2I− e−q(z−z1) − eq(z−z2)

]
A
∣∣∣χF (qr1,qr2)

〉
(4.18)

where

χF (s1, s2) =

∫ s2

s1
xF1 (x) dx, (4.19)

The corresponding impedance, accounting for the presence of an infinite linear lossless core,

omitting ohmic losses, is found by integrating over the field coordinates to give,

Z = 2πωµ0ν
2〈

χF (qr1,qr2)
∣∣∣q−7

[
(z2 − z1) q− I + e−q(z2−z1)

]
A
∣∣∣χF (qr1,qr2)

〉
. (4.20)



www.manaraa.com

57

For µr = 1, equation (4.20) reduces to equation (4.10), the core-free impedance, as required.

This bring us to the point where the formalism can be extended to allow for core end effects.

Figure 4.4 Rectangular cross coil with infinite long cylindrical ferrite core.

4.5 Semi-infinite Core

4.5.1 Filament Field

We consider next a semi-infinite core, Figure 4.5 by dividing the solution space at the base

plane of the core where z = 0. The vector potential above the base plane is A
(1)
φ and below

it is A
(0)
φ . For region (1), the vector potential consists of the infinite core solution plus a

term accounting for the core end effect. The latter is conveniently represented with the aid

of a reflection matrix R0 and transmission matrix T0 coupling all radial eigenfunctions of the

problem at the plane z = 0. Thus, the vector potential for region (1) is written

A
(1)
φ (ρ, z) = µ0Iρ0

∞∑
i=1

Ψ1 (qiρ)
1

2qi

[
e−qi|z−z0|AiF1 (qiρ0) + e−qiz

∞∑
j=1

R0ije
−qjz0AjF1 (qjρ0)

]

= µ0I

〈
Ψ1 (qρ)

∣∣∣∣12q−1(e−q|z−z0| + e−qzR0e
−qz0)A

∣∣∣∣ρ0F1 (qρ0)

〉
, (4.21)

and for region (0),

A
(0)
φ (ρ, z) =µ0Iρ0

∞∑
i=1

J1(κiρ)
eκiz

2κi

∞∑
j=1

T0ije
−qjz0AjF1(qjρ0)

=µ0I

〈
J1(κρ)

∣∣∣∣12κ−1eκzT0e
−qz0A

∣∣∣∣ ρ0F1(qρ0)

〉
. (4.22)
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Figure 4.5 Filamentary current loop coil encircling a semi-infinite cylindrical ferrite core. The

plane through the base of the core divides the space into regions (0) and (1) as

shown.

The continuity of the radial magnetic field at the base plane, written [Hρ]0 =
[
− 1
µ(ρ)

∂Aφ
∂z

]
0

=

0, is satisfied in the weak sense (17) at the plane z = 0 by taking moments of the z-derivative

of equations (4.21) and (4.22) with J1(κiρ). As a result, one obtains a relationship of the form

U(I−R0) = CT0. (4.23)

Similarly, the continuity of the normal magnetic flux density, written [Bz]0 =

[
1
ρ

∂(ρAφ)
∂ρ

]
0

= 0,

is applied by taking moments of equations (4.21) and (4.22) using J0(κiρ) to give

V(I + R0) = CT0, (4.24)

where U and V are defined in Appendix A along with and C which was referred to previously.

Solving for the reflection and transmission matrices gives

R0 = (U + V)−1 (U−V) (4.25)

and

T0 =
1

2
C−1 [(U + V)− (U−V) R0] . (4.26)

When z0 →∞, e−qz0 → 0, then equation (4.21) reduces to the expression for the infinite core

vector potential, equation (4.11), as required.
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Figure 4.6 Filamentary current loop coil encircling a semi-infinite cylindrical ferrite core above

a uniform conductive half-space.

4.5.2 Effect of a Uniform Conductor

The introduction of a half-space conductor can now be taken into account by recognizing

that its effect in region (1), Figure 4.6, can be represented by a modified core-base reflection

matrix. equation (4.21), is therefore adapted by replacing R0 with R, which is to be determined.

With this change, the vector potential for region (1) is written

A
(1)
φ (ρ, z) = µ0I

〈
Ψ1 (qρ)

∣∣∣∣12q−1(e−q|z−z0| + e−qzRe−qz0)A

∣∣∣∣ρ0F1 (qρ0)

〉
. (4.27)

Similarly equation (4.22) is replaced by one with a modified transmission matrix and a term

included to account for reflection from the conductor. The latter does not couple eigenfunctions

with dissimilar eigenvalues and therefore it can be represented by a diagonal matrix, Γ say.

Thus instead of eκzT0e
−qz0 in equation (4.22) we have (eκz + e−κzΓ) Te−qz0 . Then for region

(0), Figure 4.6, the vector potential has the form

A
(0)
φ (ρ, z) = µ0I

〈
J1 (κρ)

∣∣∣∣12κ−1 (eκz + e−κzΓ
)
Te−qz0A

∣∣∣∣ρ0F1 (qρ0)

〉
. (4.28)

The reflection coefficient due a uniform conductor, well known in a variety contexts, we

deduce for the quasi-static limit by considering the continuity of the tangential electromagnetic

field at the surface z = −d. This yields the expression

Γ = e−2κd(κ+ γ)−1 (κ− γ) , (4.29)
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where γ = [γij ] and γij =
√
κ2
ij + ωµ0µrhσδij/µrh. Here δij is the Kronecker delta, equal to

unity for i = j and zero otherwise. Appendix B gives the corresponding reflection coefficient

for a piecewise uniform stratified conductive region.

The remaining task for this section is to determine R and T accounting for the presence

of the conductor. Applying the continuity of Hρ and Bz at z = 0, using equations (4.27), and

(4.28) and taking moments as before, one finds that

U(I−R) = (I− Γ)CT (4.30)

and

V(I + R) = (I + Γ)CT. (4.31)

Solving for the reflection and transmission matrices gives

R = [(U + V) + Γ (U−V)]−1 [(U−V) + Γ (U + V)] (4.32)

and

T =
1

2
C−1 [(U + V)− (U−V) R] . (4.33)

For σ = 0 (without the conducting region), we find that γ = κ, Γ = 0, R = R0 and T = T0.

Then equation (4.27) reduces to equation (4.21) and equation (4.28) to equation (4.22). Having

established a procedure to account for a conductive region, we can extend it to deal with the case

of a finite length core. First, however, we consider a finite core in the absence of a conductor.

4.6 Finite Length Core

4.6.1 Filament Field

To find the field of a finite length circularly cylindrical ferrite core, Figure 4.7, the solution

space is divided at the end planes of the core, at z = l and z = 0. The vector potential for the

three regions thus created, can be written in the general form

A
(2)
φ (ρ, z) = µ0I

〈
J1 (κρ)

∣∣∣∣12κ−1e−κ(z−l)Tt0A

∣∣∣∣ ρ0F1 (qρ0)

〉
, (4.34)

A
(1)
φ (ρ, z) = µ0I

〈
Ψ1 (qρ)

∣∣∣∣12q−1
[
e−q|z−z0| + e−qzRb0 + eq(z−l)Rt0

]
A

∣∣∣∣ρ0F1 (qρ0)

〉
(4.35)
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Figure 4.7 A filamentary current loop is shown coaxial with a finite length cylindrical ferrite

core. The plane through the base of the core divides the space into regions (0),

(1) and (2) as shown.

and

A
(0)
φ (ρ, z) = µ0I

〈
J1 (κρ)

∣∣∣∣12κ−1eκzTb0A

∣∣∣∣ ρ0F1 (qρ0)

〉
, (4.36)

where Tt0, Tb0, Rb0 and Rt0 are matrices that can be related to those already defined, namely

T0 and R0 and we need to find these relationships. Note that the subscripts t and b refer

to the top and bottom of the core respectively. Given the properties of the reflection matrix

defined for the semi-infinite core, R0, one can take account of multiple reflections between the

planes at the ends of the finite core by noting that

Rb0 = R0

(
e−qz0 + e−qlRt0

)
. (4.37)

Similarly for the field at z = l, we find that

Rt0 = R0e
−ql (eqz0 + Rb0) . (4.38)

Solving equations (4.37) and (4.38) for Rb0 and Rt0, we get

Rb0 = G−1R0

[
I + e−qlR0e

−q(l−2z0)
]
e−qz0 (4.39)

and

Rt0 = G−1R0

[
I + e−qlR0e

q(l−2z0)
]
e−q(l−z0), (4.40)

where

G = I−R0e
−qlR0e

−ql. (4.41)
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In equations (4.34) and (4.36), Tt0 and Tb0 are transmission matrices defined with respect to

the interfaces at z = l and z = 0. Applying the continuity of Hρ and Bz at z = l as in Section

IV, we get

CTt0 = U
[
e−q(l−z0) + e−qlRb0 −Rt0

]
(4.42)

and

CTt0 = V
[
e−q(l−z0) + e−qlRb0 + Rt0

]
. (4.43)

Solving equations (4.42) and (4.43) for Tt0 gives

Tt0 = T0e
−ql (eqz0 + Rb0) . (4.44)

Similarly,

Tb0 = T0

(
e−qz0 + e−qlRt0

)
. (4.45)

For l → ∞, e−ql → 0, G → I, Rb0 → R0e
−qz0 , Rt0 → 0, Tt0 → 0, Tb0 → T0e

−qz0 and

A
(2)
φ (z, ρ)→ 0, then equations (4.35) and (4.36) agree with equations (4.21) and (4.22).

Figure 4.8 Filamentary coil with a finite long cylindrical ferrite core above a uniform conduc-

tive half-space.

4.6.2 Effect of a Uniform Conductor

Our final change to the structure is to introduce the effect of the conductor located below

a finite length cylindrical ferrite probe, Figure 4.8. In constructing the updated solution, one

can reuse equations (4.34) and (4.35) but Tt, Rb and Rt replace Tt0, Rb0 and Rt0 to account
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for the modified field. In place of equation (4.36) we have

A
(0)
φ (ρ, z) = µ0I

〈
J1 (κρ)

∣∣∣∣12κ−1 (eκz + e−κzΓ
)
TbA

∣∣∣∣ρ0F1 (qρ0)

〉
, (4.46)

where Γ is given by equation (4.29) and Tb0 is replaced by Tb to account for the presence

of the conductor. The field at the plane z = 0 is characterized by a reflection coefficient

R, equation (4.32), that compounds effects of the core base and the conductor. Using this

coefficient, we find that

Rb = R
(
e−qz0 + e−qlRt

)
(4.47)

and

Rt = R0e
−ql (eqz0 + Rb) . (4.48)

Then solving for Rb and Rt gives

Rb = G−1
1 R

[
I + e−qlR0e

−q(l−2z0)
]
e−qz0 (4.49)

and

Rt = G−1
2 R0

[
I + e−qlReq(l−2z0)

]
e−q(l−z0), (4.50)

where

G1 = I−Re−qlR0e
−ql, (4.51)

G2 = I−R0e
−qlRe−ql. (4.52)

Applying the continuity of Hρ and Bz at z = 0 gives,

(I− Γ) CTb = U
(
e−qz0 −Rb + e−qlRt

)
(4.53)

and

(I + Γ) CTb = V
(
e−qz0 + Rb + e−qlRt

)
. (4.54)

From equations (4.53) and (4.54) we get

Tb = T
(
e−qz0 + e−qlRt

)
, (4.55)

where T is given by equation (4.33). Similarly, using the continuity of Hρ and Bz at z = l gives

Tt = T0e
−ql (eqz0 + Rb) . (4.56)
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For the special case σ = 0, γ = κ, Γ = 0, R = R0, T = T0, G1 = G2 = G, equation (4.46)

reduces to equation (4.36). Having found the required reflection and transmission coefficients for

the problem, we summarize below, the probe field and impedances expressions for an inductor

with a finite length core.

4.6.3 Coil Field and Impedance

The vector potential in region (1) where a < ρ ≤ b, due to a circular filament radius ρ0

concentric with a finite length ferrite core above a uniform conductor, Figure 4.8, is

A
(1)
φ (ρ, z) = µ0I

〈
F1 (qρ)

∣∣∣∣12q−1
[
e−q|z−z0| + e−qzRb + eq(z−l)Rt

]
A

∣∣∣∣ρ0F1 (qρ0)

〉
.(4.57)

By integrating the filament potential, the magnetic vector potential of the ferrite cored probe

in the presence of the conductor is given by

A (ρ, z) = ν

∫ z2

z1

∫ r2

r1
A

(1)
φ (ρ, z) dρ0dz0

=
µ0Iν

2

〈
F1 (qρ)

∣∣∣q−1
{

2I− eq(z−z1) − e−q(z−z2)

+e−qzG−1
1

[
R
(
e−qz1 − e−qz2

)
+ (eqz2 − eqz1)

]
+eq(z−l)G−1

2

[
eql
(
e−qz1 − e−qz2

)
+ R0e

−ql (eqz2 − eqz1)
]}

q−3A
∣∣∣χF (qr1,qr2)

〉
.

(4.58)

As in equation (4.10), the coil impedance can be found by integrating with respect to the field

coordinates over the coil region. This gives

Z = ωπµ0ν
2
〈
χF (qr1,qr2)

∣∣∣q−4
{

2 (z2 − z1) q+2I− 2eq(z2−z1)

+
(
e−qz1 − e−qz2

)
G−1

1

[
R
(
e−qz1 − e−qz2

)
+ (eqz2 − eqz1)

]
+ (eqz2 − eqz1) e−qlG−1

2

[
eql
(
e−qz1 − e−qz2

)
+ R0e

−ql (eqz2 − eqz1)
]}

q−3A
∣∣∣χF (qr1,qr2)

〉
.

(4.59)

An important special case, Figure 4.9, is that of a lossless ferrite-cored inductor in free space

whose impedance can be obtained from equation (4.59) by removing the effects of the conductor.

This gives

Z0 = ωπµ0ν
2
〈
χF (qr1,qr2)

∣∣∣q−4
{

2 (z2 − z1) q+2I− 2eq(z2−z1)
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+
(
e−qz1 − e−qz2

)
G−1 [R0

(
e−qz1 − e−qz2

)
+ (eqz2 − eqz1)

]
+ (eqz2 − eqz1) e−qlG−1

[
eql
(
e−qz1 − e−qz2

)
+ R0e

−ql (eqz2 − eqz1)
]}

q−3A
∣∣∣χF (qr1,qr2)

〉
.

(4.60)

Because the free-space inductor is lossless, putting Z0 = ωL0 gives the self inductance.

Figure 4.9 An axially symmetric ferrite-cored probe.

Figure 4.10 An axially symmetric air-cored probe above a multi-layered conductive half space.

In addition, we deduce from (4.59) the impedance of a coil without a core above a multi-

layered planar conductor in a radially truncated domain, Figure 4.10. This impedance can

be found by putting q = κ, A =
◦
A, χF (qr1,qr2) = χ (κr1,κr2), R0 = 0, R = Γ, and

G1 = G2 = G = I, to give

Z = ωπµ0ν
2
〈
χ (κr1κr2)

∣∣∣κ−7
{

2 (z2 − z1)κ− 2I



www.manaraa.com

66

+2e−κ(z2−z1) +
(
e−κz1 − e−κz2

)
Γ
(
e−κz1 − e−κz2

)} ◦
A
∣∣∣χ (κr1,κr2)

〉
. (4.61)

Without the conductor, Γ = 0 and equation (4.61) reduces to equation (4.10).

4.7 Experiment and Discussion

To verify the analytical results, we have performed experiments using an eddy current probe

with a ferrite core on layered test pieces. The probe dimensions are shown in Table 4.1 and

Table 4.2 gives the test piece parameters. The experiment results are obtained by using an

Agilent 4294A Precision Impedance Analyzer.

Table 4.1 Parameters of the coil and ferrite core. Unit of dimensions is mm and uncertainty

is 0.01 mm.

Coil Ferrite core

Inner diameter 2r1 10.05 Diameter 2a 7.76

Outer diameter 2r2 20.40 Length l 29.95

Length z2 − z1 18.18 Liftoff d1 0.59

Offset z1 2.65 Rel. permeability µr 250

Number of turns N 776

DC resistance 8.09 Ω

Table 4.2 Parameters of metal plates. Conductivity σ, thickness T and lateral dimensions

w × l. Uncertainty in thickness is 0.01 mm and in lateral dimensions is 1 mm.

Metal σ (MS/m) T (mm) w × l (mm)

Aluminum (7075) 20.4±0.4 25.37 615×616

Brass (C2600) 16.42±0.09 5.66 615×616

Aluminum (2042) 17.58±0.09 1.59 152×203

Ti-6Al-4V 0.58±0.01 12.47 318×331

The radius of the truncated domain b is selected to ensure that the truncation error is of

the order of 0.2%. With the given dimensions of the coil and ferrite core, b is chosen to be 15

times the outer radius of the coil and 100 terms are used in the summation to achieve a good

convergence in the numerical calculations, even if there is a nonconducting layer in the test

piece. By using equations (4.10) and (4.60), we can get the impedances of the probe, without

and with a ferrite core in air and hence the self-inductance L0 can be found for both cases.

The calculated and measured values of free-space self-inductance are given in Table 4.3.
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Table 4.3 Calculated and measured DC inductance for the coil with and without the ferrite

core.

µr Measured (mH) Calculated (mH)

1 4.149 4.155

250 19.27 19.32

4.7.1 Truncated Half-space Conductor

For this case, the test piece is a large aluminum 7075 plate. Its thickness is at least 5 times

that of the skin depth at the lowest measurement frequency and the surface of the plate large

enough that edge effects can be neglected. Calculations using a conductor of infinite thickness

should therefore approximate the measurements. The comparison of the analytical evaluations

and experimental results in Figure 4.11 shows a good agreement. On average, the difference

between theoretical predictions and experimental measurements of absolute impedance is 0.5%.

4.7.2 Two-layer Case

To verify the model predictions for a two-layer case, a large thin brass C2600 plate (as

the upper layer) is used in the experiment with the air below being the second layer. The

experimental coil impedance data are compared with the theory curves in Figure 4.12. For

the two layer case, only Γ1 must be calculated in advance to determine Γ as required for

equations (4.66)-(4.68). Figure 4.12, shows that the experiment results are predicted accurately

by the two-layer model, which can be used to determine the thickness and conductivity of

a conductive plate. Furthermore, especially in the low frequency range, there are obvious

differences between the calculated results based on the models of the two-layer and half-space

structure, which verifies that at low frequency, the thin plate can not be treated as a half-space

conductor.

4.7.3 Three-layer Case

A thin aluminum 2042 plate and a thicker titanium Ti-6Al-4V plate were chosen to validate

the three-layer model. In the experiment, the aluminum plate is the upper layer, the titanium

alloy plate is the middle layer and air is the bottom layer. In Figure 4.13, the coil impedance
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Figure 4.11 Normalized impedance change as a function of frequency for an air-cored coil

(µr=1) and ferrite-cored coils (µr=250) due to the aluminum 7075 plate. Circles

are experiment data and solid lines are theory results.

measurements are compared with the theoretical calculation. In this case, Γ2, Γ1 and Γ are

derived in sequence. The agreement is also quite good for this case.

4.8 Conclusion

In this article, the TREE method for a ferrite-cored coil above a multi-layered conducting

plates has been studied. Reflection and transmission coefficient matrices due to the end effects

of the ferrite core have been introduced. By using a recursion relationship we have determined

the reflection coefficient of a conductor with an arbitrary number of uniform layers. This

relationship is used, together with the ferrite core probe model to predict probe impedances

for a simple ferrite core probe above a multi-layered conductor. For multi-frequency modeling
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Figure 4.12 Normalized impedance change as a function of frequency for an air-cored coil

(µr=1) and ferrite-cored coil (µr=250) due to the brass C2600 plate. Circles are

experiment data, solid lines are theory results of the two-layer model and dash

lines of half-space model.

only the reflection matrix, Γ, changes with frequency and therefore the calculations can be

done efficiently. Furthermore, this approach can be extended to other axisymmetric ferrite

core shapes (19), such as U-shape and E-shape. It is also possible to extend this approach to

3D problems in Cartesian coordinates using a double truncated series.
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Figure 4.13 Normalized impedance change as a function of frequency for an air-cored coil

(µr=1) and ferrite-cored coil (µr=250) due to the plates (Al on Ti). Circles are

experiment data and solid lines are the three-layer theoretical predictions.

4.10 Appendix

4.10.1 Matrix Definitions

In the matrices evaluated here, the κi are the roots of J1 (κib) = 0 and the qj are roots of

F1 (qjb) = 0 where F1 (qb) is given by (4.13)-(4.15).

C = [cij ]

cij =

∫ b

0
J0 (κiρ) J0 (κjρ) ρdρ =

∫ b

0
J1 (κiρ) J1 (κjρ) ρdρ

=


0 i 6= j

b2

2 J
2
0 (κjb) i = j.

(4.62)
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Using Ψ1 given by (4.12)-(4.15), we define

D = [dij ]

dij =
1

µr

∫ a

0
Ψ1 (qiρ) Ψ1 (qjρ) ρdρ+

∫ b

a
Ψ1 (qiρ) Ψ1 (qjρ) ρdρ

= µr

∫ a

0
J1 (qiρ) J1 (qjρ) ρdρ+

∫ b

a
F1 (qiρ)F1 (qjρ) ρdρ

=


0 i 6= j

b2

2 F
2
0 (qjb) + a2(µr−1)

2

[
J2

0 (qja)− µrJ2
1 (qja)

]
i = j.

(4.63)

Similarly we define

U = [uij ]

uij =
1

µr

∫ a

0
J1 (κiρ) Ψ1 (qjρ) ρdρ+

∫ b

a
J1 (κiρ) Ψ1 (qjρ) ρdρ

=

∫ a

0
J1 (κiρ) J1 (qjρ) ρdρ+

∫ b

a
J1 (κiρ)F1 (qjρ) ρdρ

=



a
κ2i−q

2
j
κiJ0 (κia) J1 (qja) (µr − 1) κi 6= qj

b2

2 J0 (qjb)F0 (qjb)− a2

2 J
2
1 (qja) (µr − 1)

+
aJ0(qja)J1(qja)

2qj
(µr − 1) κi = qj .

(4.64)

Using Ψ0 given by (4.12)-(4.15), we define

V = [vij ]

vij =

∫ b

0
J0 (κiρ) Ψ0 (qjρ) ρdρ

= µr

∫ a

0
J0 (κiρ) J0 (qjρ) ρdρ+

∫ b

a
J0 (κiρ)F0 (qjρ) ρdρ

=


a

κ2i−q
2
j
κiJ1 (κia) J0 (qja) (µr − 1), κi 6= qj

b2

2 J0 (qjb)F0 (qjb) + a2

2 J
2
0 (qja) (µr − 1) κi = qj .

(4.65)

4.10.2 Reflection Coefficient for a Piecewise Uniform Layered Conductor

For a multi-layered conductor as shown in Figure 4.1, the expression for the ferrite-cored coil

impedance is the same as equation (4.59) where Γ is now considered to be the corresponding

reflection coefficients for a piecewise uniform layered conductor including a possibly noncon-

ducting layer. The reflection coefficient, Γ, is then defined with respect to the surface of the
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conductor at z = −d1, includes the effects of multiple interfaces and is given by,

Γ = e−2κd1 [(κ+ γ1) + Γ1(κ− γ1)]−1 [(κ− γ1) + Γ1(κ+ γ1)] , (4.66)

where Γ1 is the reflection coefficient defined with respect to the interface at z = −d2. In general

for a n-layer conductor, one finds, using an approach similar to one given previously (18), that

Γi = e−2γi(di+1−di)[(γi + γi+1) + Γi+1(γi − γi+1)]−1 [(γi − γi+1) + Γi+1(γi + γi+1)] ,

i = 1, 2, ..., n− 2 (4.67)

and

Γn−1 = e−2γn−1(dn−dn−1)(γn−1 + γn)−1 (γn−1 − γn) , (4.68)

where γm = [γmij ], γmij =
√
κ2
ij + ωµ0µrmσmδij/µrm, m = 1, 2, ..., n and Γi is the reflection

coefficient defined at the interface z = −di+1. In the case of a uniform half-space, for example,

d2 →∞, Γ1 → 0, and equation (4.66) reduces to equation (4.29).
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CHAPTER 5. BOBBIN COIL IMPEDANCE CHANGE DUE TO A

TUBE SUPPORT PLATE

A paper to be submitted to The IEEE Transactions on Magnetics

Yi Lu and John R. Bowler

5.1 Abstract

We have evaluated the signal variation of a differential bobbin coil due to a tube support

plate by using a simple semi-analytical method. To find the coil response, the electromagnetic

field is determined for a bobbin coil coaxial with a flawless tube passing through a coaxial

circular hole in a plate. The field in this axially symmetric configuration has been found

analytically by introducing truncation boundaries at planes perpendicular to the axis of the

system, remote from the probe and support plate. This means that tangential electric field on

the planes can be set to zero without significantly affecting the field in the support plate region.

By restricting the problem domain using a truncation boundaries, the solution is expressed as

Fourier series for different region of the limited domain, rather than as Fourier transforms. The

series coefficients are determine using the continuity properties of the electromagnetic field.

This process yields the expansion coefficients expressed in terms of corresponding coefficients

of an expansion for the source coil in free space. From the solution, the coil signal due to the

support plate is found. The accuracy of the calculation is easily controlled by adjusting the

distance between the truncation planes and/or the number of terms in the series expansions.

An extension of this analysis will provide an efficient means of computing signals due to tube

cracks in the support plate region.
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5.2 Introduction

The problem of calculating eddy current probe signals of bobbin coils used for tube in-

spection has been studied extensively to simulate the testing heat exchangers (1). This is

motivated by the use of numerical simulations to improve inspections and to aid in the inter-

pretation of test data. Calculations can be time consuming if the numerical formulation leads

to a large number of unknowns but the computational cost can be greatly reduced by using

semi-analytical methods. In particular, calculations of the response due to a flaw in a tube can

be carried out efficiently using integral methods because one can derive an integral kernel for

an infinite tube problem. This means that the kernel embodies the interface conditions at the

surface of the tube. Therefore an integral expression for the tube field can be constructed which

takes account of these conditions automatically. The problem is usually reduced from one of

solving an integral equation to one of computing the solution of a matrix equation by applying

the method of moments. In this scheme, the only unknowns in the problem are those which

represent the field in the region of an inhomogeneity in the tube wall. The inhomogeneity can,

for example, be a crack, which can often be adequately represented using just few hundred

volume elements. In which case the flaw signal can be determined accurately, efficiently, and

quickly.

If there is a tube support plate present, this must be taken into account. It produces probe

signals that are usually larger than those due to cracks and can mask the flaw signals. Account-

ing for the support plate can be done by rendering it in a discrete form but the computation

cost would then escalate. In order to retain the efficiency of the uniform tube calculations, we

have sought a better approach in which the effect of the tube support plate is included in the

kernel of the integral formulation of the flaw problem. This has been done for a simple case in

which the plate has a circle hole in it through which is a coaxial tube. Potentially, the compu-

tational burden of doing this is not negligible because the kernel would be more complicated,

but the number of unknowns remains unchanged and this is usually a critical cost-dependent

parameter. In order to reach the point at which the new kernel can be used, we consider here

a preliminary problem in which the probe signal due to the support plate is calculated analyt-
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ically. There are two principle versions of the basic support plate problem depending on the

probe. The first and simpler one, which will be considered here, involves a bobbin coil coaxial

with the tube. In the more complicated case, one considers a rotary pancake coil, defined as

one having its axis perpendicular to that of the tube.

The first basic support plate problem is axially symmetric and could be solved numerically

with moderate computational cost. However, because we need a solution that can evolve into

one that can be used to compute a support plate kernel and thereby give us low cost method of

getting flaw signals, we used analytical methods as much as possible. Without the support plate,

the bobbin coil field is given by analytical expressions given by Dodd and Deeds (2). These

solutions are derived using separation of variables in which the axial dependence is expressed

in terms of a Fourier transform and the radial dependence using associated Bessel functions.

In the presence of the support plate, the problem is more complicated because the probe field

must satisfy field continuity conditions at the surface of the support plate. In order to deal with

these extra constraints we truncate the problem domain by introducing an artificial boundary

at an axial plane some remote distance for the probe and plate. On this boundary, the field is

set to zero. At the axial plane bisecting the support plate we impose a symmetry condition.

This allows us to express the general solution as a combination of odd and ever solutions with

respect to the z−axis whose origin is at the mid-plane of the support plate. The effect of the

truncation boundary is to change the z-dependence to one represented by a Fourier series rather

than a Fourier transform. In this way the problem reduces to one of computing the coefficient

of a series. In effect, the introduction of a boundary has made the problem discrete which

means that we can determine coefficients of the series by solving a matrix equation derived

using eigenfunctions that will allow us to satisfy the continuity conditions at the surface of the

support plate.

The general approach is referred to as the truncated region eigenfunction expansion (TREE)

method. By introducing an artificial boundary we have a means of getting an analytical solution

to a problem that might be intractable or at least more difficult by other means. The new

boundary modifies the problem but because it is remote from the source of the field in a

place where the field would otherwise be close to zero anyway, it need not have a significant
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effect on the field strength in the source region. In using the TREE method for quasi-static

problems(3; 4; 5) we have established a useful guiding principle. This states that if an analytical

solution can be found for a source in air near a conductor then you should also be able to find

an analytical solution for a dipole source in the conductor by using the same approach. In eddy

current problems this implies that if coil field can be found in an analytical form for a given

flawless configuration, then you should also be able to find an analytical expression for the

Green’s kernel representing a singular source in the conductor. That kernel is then available

to get a numerical solution to an integral equation using the moment method and thereby

determine the effect of a flaw in the conductor.

In this article we make a start on support plate related problems by finding an analytical

solution for a bobbin coil in a tube in the presence of a support plate. This will form a base

for future work in which we seek the kernel which embodies the boundary conditions on a tube

and a support plate and use it in an efficient calculation of the probe response to cracks in a

tube in the support plate region.

5.3 Formulation

We consider a differential bobbin coil in a tube passing through a coaxial circular hole in

an infinite support plate, Figure 5.1. Both the tube and the support plate are assumed to

be homogeneous having linear material properties which are not necessarily the same. The

differential probe signal is to be determined as a function of probe position by considering

solutions that have odd or even symmetry about a plane z = 0 that divides the problem region

and the support itself at the mid-plane. Taking the average of the two solutions gives the one

required. Because the probe is differential, we can either consider coils with the same current

and subtract the voltage signals, or coils with opposite currents and add the voltage signals.

Here we follow the second option.

The tube has inner radius b1 and outer radius b2. The thickness of the support plate is 2c and

b3 is the radius of the hole in the support plate. One can let this radius be the same as b2 but in

general they will be different. It is assumed that the tube has the permeability µ0µr1 and has a

uniform conductivity σ1. Whereas the support plate has a conductivity σ2 and a permeability
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Figure 5.1 Perspective view of a differential bobbin coil in a tube with a support plate.

µ0µr2. Axial symmetry implies that we can determine the quasi-static electromagnetic field

using the azimuthal component of the magnetic vector potential (MVP). For a nonconductive

region, the MVP satisfies the Laplace equation and for a conductive region, the Helmholtz

equation,

(∇2 − k2
m)A = 0, (5.1)

where k2
m = ωµ0µrmσm with m = 1 for the tube region and m = 2 for the plate. We determine

the azimuthal MVP for the half the problem domain (z ≥ 0) assuming, in turn, odd and even

symmetry about a plane z = 0 bisecting the support plate. For the odd symmetry solution,

we impose Dirichlet conditions on the MVP at the dividing plane z = 0 and at the truncation

boundary, z = h. Thus, these two surfaces represent magnetic insulation boundaries. For the

even symmetry solution we impose a Dirichlet condition (magnetic insulation boundary) at

z = h and a Neumann condition at z = 0 (electric insulation boundary).

5.3.1 Odd Solution Analysis

Referring to Figure 5.2, we identify 4 regions separated by cylindrical boundaries and express

the magnetic vector potential in these regions in terms of series expansions. Region 1 is defined

as the cylindrical zone between the coil and the inner surface of the tube, such that r2 ≤ ρ ≤ b1

where r2 is the outer radius of the coil. In this region, the field, and thus the MVP, is the sum
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Figure 5.2 Differential bobbin coil in a tube with a support plate. The axis of the tube is shown

on the left as line formed with long and short dashes. The dashed horizontal line

at the bottom of the diagram, indicate the mid-plane symmetry boundary about

which the solution can be odd or even. The symmetry plane bisects the support

plate. At the top of the diagram we have shown the truncation boundary.

of a term representing the field due to the source coil in free space plus the reaction field due

to eddy currents induced in the tube and support plate. Corresponding expansion coefficients

for these terms are written Di and C
(1)
i respectively. Later we will specify source coefficients

Di.

Region 2 is the tube region and region 3 is non-conductive including a small annular gap

of width b3 − b2 between the tube and support plate. Region 4 consists of a non-conductive

region where c < z ≤ h and a conductive region of the support plate where 0 ≤ z ≤ c .

The magnetic vector potentials in the regions 1 through 3 for the odd parity solution have
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the forms

A1(ρ, z) =
∞∑
i=1

sin(uiz)
[
I1(uiρ)C

(1)
i +K1(uiρ)Di

]
(5.2)

A2 (ρ, z) =
∞∑
i=1

sin (uiz)
[
I1 (γiρ)C

(2)
i +K1 (γiρ)D

(2)
i

]
(5.3)

and

A3 (ρ, z) =
∞∑
i=1

sin (uiz)
[
I1 (uiρ)C

(3)
i +K1 (uiρ)D

(3)
i

]
(5.4)

where ui = iπ
h , γ

2
i = u2

i + k2
1.

For region 4 we ensure the continuity of Eφ and the MVP at z = c by writing

A4 (ρ, z) =
∞∑
i=1

 sin(qiz) / sin(qic)

sin[pi (h−z)] / sin[pi (h−c)]

K1 (piρ)D
(4)
i

0 ≤ z ≤ c

c < z ≤ h
(5.5)

where p2
i = q2

i + k2
2. The eigenvalues of qi and pi can be numerically derived from (6)

qi cos(qic) sin[pi(h− c)] + µr2pi sin(qic) cos[pi(h− c)] = 0, (5.6)

which is deduced from the continuity of Hρ at the upper surface of the support plate.

From the continuity of Eφ and Hz at ρ = b3, we find that

A3(b3, z) = A4(b3, z) (5.7)

and  1

1

 1

ρ

∂ (ρA3)

∂ρ

∣∣∣∣∣∣∣
ρ=b3

=

 1
µr2

1

 1

ρ

∂ (ρA4)

∂ρ

∣∣∣∣∣∣∣
ρ=b3

0 ≤ z < c

c ≤ z ≤ h.
(5.8)

We ensure that the continuity of Eφ and Hz are satisfied in the weak sense (7) by taking

moments as follow. Substituting (5.4) and (5.5) into (5.7)-(5.8), multiplying sin (uiz) and

integrating from 0 to h gives

I1 (ub3) C(3) +K1 (ub3) D(3) = UK1 (pb3) D(4) (5.9)

and

u
[
I0 (ub3) C(3) −K0 (ub3) D(3)

]
= −VpK0 (pb3) D(4) (5.10)
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where u, p and Bessel functions with bold symbol arguments represent diagonal matrices, C(3)

and D(3−4) are column vectors while U and V are matrices whose elements are

Uij =
2

h

{
1

sin (qjc)

∫ c

0
sin (uiz) sin (qjz) dz

+
1

sin [pj (h− c)]

∫ h

c
sin (uiz) sin [pj (h− z)] dz

}
(5.11)

and

Vij =
2

h

{
1

µr2 sin (qjc)

∫ c

0
sin (uiz) sin (qjz) dz

+
1

sin [pj (h− c)]

∫ h

c
sin (uiz) sin [pj (h− z)] dz

}
. (5.12)

Equations (5.9) and (5.10) are found by applying the trigonometric orthogonality relation∫ h

0
sin (uiz) sin (ujz) dz =

h

2
δij , (5.13)

where, δij is the Kronecker delta.

Similarly, using the continuity of Eφ and Hρ at ρ = b2, one gets

I1 (γb2) C(2) +K1 (γb2) D(2) = I1 (ub2) C(3) +K1 (ub2) D(3) (5.14)

and

γ
[
I0 (γb2) C(2) −K0 (γb2) D(2)

]
= µr1u

[
I0 (ub2) C(3) −K0 (ub2) D(3)

]
. (5.15)

Continuity at ρ = b1, means that

I1 (ub1) C(1) +K1 (ub1) D = I1 (γb1) C(2) +K1 (γb1) D(2) (5.16)

and

µr1u
[
I0 (ub1) C(1) −K0 (ub1) D

]
= γ

[
I0 (γb1) C(2) −K0 (γb1) D(2)

]
. (5.17)

Here, γ is a diagonal matrix. C(1−2), D and D(2) represent column vectors.

By applying matrix and vector manipulations to the equations (5.9)-(5.10) and (5.14)-

(5.17), the six unknown coefficient vectors C(1−3) and D(2−4) can be expressed in term of the

presented source vector D. The expansion coefficients are then given by

C(1) = WD = WaW
−1
b D (5.18)
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C(2) =
1

b1
C24W

−1
b D (5.19)

C(3) =
1

b1b2
C34W

−1
b D (5.20)

D(2) =
1

b1
D24W

−1
b D (5.21)

D(3) =
1

b1b2
D34W

−1
b D (5.22)

D(4) =
1

b1b2b3
W−1

b D (5.23)

where C24, C34, D24, D34, Wa and Wb are defined as

C24 = γK0 (γb2) T1 + K1 (γb2) T2 (5.24)

C34 = uK0 (ub3) UK1 (pb3)−K1 (ub3) VpK0 (pb3) (5.25)

D24 = γI0 (γb2) T1 − I1 (γb2) T2 (5.26)

D34 = uI0 (ub3) UK1 (pb3) + I1 (ub3) VpK0 (pb3) (5.27)

Wa = uK0 (ub1) W1 + K1 (ub1) W2 (5.28)

Wb = uI0 (ub1) W1 − I1 (ub1) W2 (5.29)

with

T1 = I1 (ub2) C34 + K1 (ub2) D34 (5.30)

T2 = µr1u [I0 (ub2) C34 −K0 (ub2) D34] (5.31)

W1 = I1 (γb1) C24 + K1 (γb1) D24 (5.32)

W2 =
1

µr1
γ [I0 (γb1) C24 −K0 (γb1) D24] . (5.33)

Thus, the eddy current density in the tube can be written as

J2 (ρ, z) = −ωσ1A2 (ρ, z) (5.34)

with (5.3), (5.19) and (5.21).
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5.3.2 Even Solution Analysis

Following the similar procedure, for the even parity, the azimuthal components of the MVP

in each region can be expressed as below:

A1 (ρ, z) =
∞∑
i=1

cos (uiz)
[
I1 (uiρ)C

(1)
i +K1 (uiρ)Di

]
(5.35)

A2 (ρ, z) =
∞∑
i=1

cos (uiz)
[
I1 (γiρ)C

(2)
i +K1 (γiρ)D

(2)
i

]
(5.36)

A3 (ρ, z) =
∞∑
i=1

cos (uiz)
[
I1 (uiρ)C

(3)
i +K1 (uiρ)D

(3)
i

]
(5.37)

and

A4 (ρ, z) =
∞∑
i=1

 cos(qiz) / cos(qic)

sin[pi (h−z)] / sin[pi (h−c)]

K1 (piρ)D
(4)
i

0 ≤ z ≤ c

c < z ≤ h
(5.38)

where ui = (2i−1)π
2h , γ2

i = u2
i + k2

1, and p2
i = q2

i + k2
2. Similarly, the values of qi and pi can be

derived numerically from

qi sin(qic) sin[pi(h− c)]− µr2pi cos(qic) cos[pi(h− c)] = 0. (5.39)

As for odd parity case, using the continuity conditions that apply to the field at the cylindrical

interfaces, one gets the same final expressions with modified source coefficients Di, matrices U

and V with their elements, given by

Uij =
2

h

{
1

cos (qjc)

∫ c

0
cos (uiz) cos (qjz) dz

+
1

sin [pj (h− c)]

∫ h

c
cos (uiz) sin [pj (h− z)] dz

}
(5.40)

and

Vij =
2

h

{
1

µr2 cos (qjc)

∫ c

0
cos (uiz) cos (qjz) dz

+
1

sin [pj (h− c)]

∫ h

c
cos (uiz) sin [pj (h− z)] dz

}
(5.41)

using the orthogonality property

∫ h

0
cos (uiz) cos (ujz) dz =

h

2
δij . (5.42)
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5.3.3 Source Coefficients

The coefficients Di describe the field due to the isolated source coil and have been studied

for both odd and even configurations (6; 8). For theses two cases, in a truncated non-conductive

region, the magnetic vector potential outside the coil has the form

Aodd
0 (ρ, z) =

∞∑
i=1

sin (uiz)K1 (uiρ)Dodd
i (5.43)

and

Aeven
0 (ρ, z) =

∞∑
i=1

cos (uiz)K1 (uiρ)Deven
i (5.44)

where

Dodd
i =

2µ0νI

hu3
i

[cos (uizl2)− cos (uizl1)]χ (uir1, uir2) (5.45)

and

Deven
i =

2µ0νI

hu3
i

[sin (uizl1)− sin (uizl2)]χ (uir1, uir2) (5.46)

with ν denoting the wire-turns density of either coil:

ν =
N

(r2 − r1)(z`2 − z`1)
` = 1, 2 (5.47)

and

χ(x1, x2) =

∫ x2

x1
xI1(x) dx. (5.48)

5.3.4 Impedance

The impedance change of a coil due to the presence of the tube and support plate is (5)

I2∆Z =
2πω

µ0

∫ h

0

[
A0
∂ (ρ∆A)

∂ρ
−∆A

∂ (ρA0)

∂ρ

]∣∣∣∣
ρ=b1

dz (5.49)

where A0 is defined as (5.43) or (5.44) for different configurations and the magnetic vector

potential change is given by

∆Aodd (ρ, z) =
∞∑
i=1

sin (uiz) I1 (uiρ)C
(1)
i (5.50)

or

∆Aeven (ρ, z) =
∞∑
i=1

cos (uiz) I1 (uiρ)C
(1)
i . (5.51)
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Substituting into (5.49), for both odd and even parities, the impedance change of a single source

coil has the form

∆Z =
ωπh

µ0I2
DTC(1) =

ωπh

µ0I2
DTWD (5.52)

where the matrices D and W are dependent on the specific symmetry (odd or even case).

For a differential bobbin coil consisting of two identical coils, the contribution of the tube is

canceled and the corresponding impedance change due to the tube support plate is expressed

as

∆Z = ∆Z2 −∆Z1. (5.53)

5.4 Results

We have compared semi-analytical results using the TREE method with results found using

a two-dimensional finite-element method (FEM) package with the problem parameters given

in Table 5.1. Figure 5.3 shows the impedance change as a function of the center position of

the differential bobbin coil (from zc = 0 mm to zc = 10 mm) at different frequencies, in which,

both the tube and the support plate are nonmagnetic material (µr1 = µr2 = 1). The above

shows a good agreement between the TREE and FEM results, and we can also observe that

when increasing the frequency, the amplitude of the eddy current signal also increases and the

curve rotates clockwise.

Table 5.1 Parameters for the coil and test pieces.

Coil Tube Support Plate

r1 7.83 mm b1 9.84 mm b3 11.21 mm

r2 8.50 mm b2 11.11 mm 2c 1 mm

z22 − z21 2 mm σ1 1 MS/m σ2 10 MS/m

d 0.5 mm µr1 1, 10, 15, 30, 50 µr2 1, 10, 15

N 70

As shown in Figure 5.4, the predictions of coil impedance variations with distance from the

support plate are compared with FEM at an excitation frequency of 10 kHz. In this case, only

the tube is magnetic material (µr1 > 1, µr2 = 1). Both curves in Figure 5.4 shows excellent

agreement to the results of the FEM. By comparing with the nonmagnetic tube result (at 10
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Figure 5.3 Eddy current signal variation from zc = 0 mm to zc = 10 mm at different frequen-

cies compared with FEM results, in which, both the tube and the support plate

are non-magnetic material (µr1 = µr2 = 1).

kHz) in Figure 5.3, we can observe that the signal decreases greatly with the increasement of

the relative permeability of the tube.

A more complicated case is shown in Figure 5.5, in which both the tube and the support

plate are magnetic materials and the relative permeabilities of the tube and the support plate

can be different, though the same as in the figure. Based on the theoretical calculation and

numerical computation of FEM, it is observed that the effect due to the support plate is very

weak for big relative permeability or high excitation frequencies. As a result, two cases with

small relative permeabilities (10 and 15) at 1kHz are analyzed, and show good agreements with

FEM results.

5.5 Conclusion

A semi-analytical model of a differential bobbin coil impedance change due to a coaxial cir-

cular tube support plate has been developed. Within a truncated domain, the axial dependence

of the magnetic vector potential can be represented by a Fourier series and the problem solved

to account for effects the tube support plate in one in which the expansion coefficients in this
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Figure 5.4 Eddy current signal variation from zc = 0 mm to zc = 10 mm at 10 kHz compared

with FEM results, in which the tube is magnetic and the support plate is not.

(µr1 > 1, µr2 = 1).

series is found. The theoretical calculations show an excellent agreement with the numerical

results of FEM. Besides, the close-form expression of the magnetic vector potential in a tube

is critical for the more complicated 3D model for a support plate problem with a flaw or crack

in the adjacent tube. The approach can be extended to deal with other similar symmetric

structures, such as a circular internal or external groove in a magnetic tube.
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Figure 5.5 Eddy current signal variation from zc = 0 mm to zc = 10 mm at 1 kHz com-

pared with FEM results. Here, both tube and support plate are magnetic material

(µr1 = µr2 > 1).
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CHAPTER 6. GENERAL CONCLUSIONS

6.1 General Discussion

For DCPD measurements, an analytical model of edge effects on metal plates with finite

thickness has been established. The expression of electrical field for thinner plates represented

by a Fourier series overcomes the slow convergence of the triple infinite summation generated

from the method-of-images. Comparison between theory and experiments on several aluminium

and spring-steel plates of various sizes shows excellent agreement. Additionally, it is shown that

the uncertainty is reduced, for a given plate size, if the probe pick-up points are moved closer

to the current injection points, rather than adopting the common arrangement in which the

four probe points are equally spaced.

The electric field of DCPD on an uniformly layered conductive cylinders with finite length

has been determined in Chapter 3 by the analytical solution expressed in terms of a Green’s

function. A series of four-point DCPD experiments are also designed to verify the theory

solution, showing good agreements with theoretic evaluation. These analytic solutions offer a

non-destructive determination of the thickness or electrical conductivity of the layered cylinder

if the other parameters are given, or both parameters at the same time with more than four

electrodes or by connecting electrodes in different configurations. Since this method is very

sensitive to the thin tube wall thickness, it is suitably used to monitor the variation of wall

thickness of pipes in power or chemical plants.

In Chapter 4, the analytical expression of the impedance and electric field of a ferrite-

cored coil over a layered conductor has been developed by using the radially truncated region

eigenfunction expansion (TREE) method. Starting with the field of a circular current filament

in a radially truncated domain, a solution for a filament and a rectangular cross-section coil
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with an infinitely long circularly cylindrical ferrite core has been constructed, then the field

and impedance of a probe with finite length core are deduced. During the construction of the

finite core solution, the reflection and transmission coefficient matrices that account for the

core end effects are introduced and the effect of a multi-layered conductor below the probe is

also taken into account. Finally, the numerical prediction for the analytical expression of probe

impedance has been compared with experiments, showing an excellent agreement.

The impedance variation of a differential bobbin coil due to a tube support plate has been

evaluated by using a semi-analytical method. The solution of electric field in each region

can be expressed as Fourier series by applying an axial truncation boundary which satisfies the

continuity conditions at the cylindrical boundaries. The theoretical predictions show very good

agreement with the numerical results of finite element method (FEM). This will form a base

for the future research in which we seek the kernel which embodies the boundary conditions

on a tube and a support plate and complete an efficient calculation of the probe response to

cracks in a tube near a support plate.

6.2 Recommendations for Future Research

Transient (or pulsed) eddy current testing is widely used to detect and size the surface and

subsurface flaws of conductive test pieces due to its broadband signal and it is simple, cheap

and convenient in practice. The investigation of transient eddy current probe on layered planar

structures has been developed using both analytical and numerical methods. It has been widely

applied to the pipeline inspection in power plants, oil and gas transmissions, etc. In most cases,

the pipes can be treated as layered plates if the dimension of pipes is much bigger than the coil

whose axis is perpendicular to the surface of the pipe. To inspect the whole section of the pipe,

the coil has to be moved around the pipe multiple times, which is very time consuming for a

long and big pipe. Furthermore it is likely to leave some area uninspected and is not suitable

for thin pipe. Fortunately, if the time domain expression of the field due to a transient eddy

current coil encircling an arbitrary layered rod, Figure 6.1, can be derived, it will be helpful to

offer a quick, convenient and reliable method for pipelines inspection.

As mentioned in Chapter 4, ferrite-cored coils have better signal-to-noise ratio and higher
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Figure 6.1 A uniformly layered conducting rod of infinite length encircled by a co-axial coil

with rectangular cross-section.

detection resolution for crack or corrosion inspections. The model of the ferrite-cored probe due

to a surface or subsurface crack in a conductive plate will be investigated in near future. Some

experiments and simulations by FEM have been done, experiments configurations as shown

in Figure 6.2. Good agreement between numerical results of FEM and experiments data is

observed in Figure 6.3 which also shows the ferrite-cored probe has much better performance

during the inspection. In addition, this approach can be extended to be applied for other more

complicated axisymmetric ferrite core shaped probes, such as in Figure 6.4.

The semi-analytical solution of the field and eddy current probe response in present of the

tube and support plate have been derived. Based on this, we can compute the coil impedance

variation due to the flaw using discrete volume elements in the flaw region only accurately and

efficiently, though usually the surrounding support plate generates much stronger signals in the

differential bobbin coil (or rotary pancake coil), which can mask the signals due to the nearby

flaws in the tube, as shown in Figure 6.5. Similar method has been used in the problem of

a rotary pancake pick-up coil signal change due to a crack in a tube. Furthermore, we will

investigate the response of a rotary pancake coil due to a crack in a tube with the presence of

a support plate in Figure 6.6.
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Figure 6.2 Air-cored and ferrite-cored coils scanning a semi-elliptical crack in a conductive

plate.
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Figure 6.3 Impedance change of air-cored and ferrite-cored coils due to a semi-elliptical crack

in a conductive plate as a function of coil position at 10 kHz.
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Figure 6.4 Other axisymmetric ferrite core shaped probes.

Figure 6.5 Differential bobbin coil inside a tube with a crack adjacent to a support plate.



www.manaraa.com

97

Figure 6.6 Rotary pancake coil inside a tube with a crack near to a support plate.
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APPENDIX A. EDGE EFFECTS IN FOUR POINT DIRECT

CURRENT POTENTIAL DROP MEASUREMENT

A paper published in The Review of Progress in Quantitative Nondestructive Evaluation

Yi Lu, John R. Bowler, Chongxue Zhang and Nicola Bowler

Abstract

The four point direct current potential drop (DCPD) technique is used to measure electrical

conductivity and crack depth. It is also used, together with Hall voltage measurements, to

evaluate carrier concentration and mobility in semiconductors. Here the theory of DCPD is

studied for planar structures in which edge effects may have to be taken into account and

correction made to ensure accuracy. The current injected at a point on the surface of an

infinite plate of finite thickness gives rise to a field that can be expressed as a summation

derived using image theory. Because the images are periodic in the direction perpendicular to

the plate surface, the field can also be conveniently expressed in the form of a Fourier series.

The two basic formulas; image summation and Fourier series, can be modified for the case where

the probe points are near the edge of a plate by further applying image theory and summing

image/Fourier terms in two dimensions. Both of these approaches agree with measurement

results very well.

Introduction

The direct current potential drop (DCPD) technique is widely used to characterize electrical

conductivity of materials in the semiconductor industry (1), in biomedical research (2) and in

geophysical applications (3). Compared with other measurement methods such as eddy-current
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technology (ECT), DCPD can be applied to measure the conductivity of ferrous metals, being

independent of magnetic permeability. Since the measured signal is inversely proportional to

the conductivity, a good signal-to-noise ratio can be guaranteed for low-conductivity materials

such as semiconductors and geophysical specimens. For DCPD measurements, the four-point

probe is one of the most common probe configurations used in practice. Often, although not

necessarily, the probe points are arranged in a straight line as shown in Figure A.1. Generally,

the current is injected and extracted via the outer two pins (P1 and P2) and the floating poten-

tial drop is measured across the inner two pins (Q1 and Q2) with a high input impedance circuit.

When the probe is sufficiently far from the boundary of the specimen (eight or nine times the

probe length (4)), the current distribution is not significantly disturbed by the boundary. When

the probe is close to the boundary, however, the current can be significantly distorted which

results in an increase in the measured potential drop. So, even for a uniformly thick specimen,

different voltages can be measured at different probe positions. Figure A.2 shows the relative

difference between voltages measured experimentally at the center and near the edge of a large

thin plate. The detailed parameters for both the plate and probe utilized in this experiment

can be found in Table A.1.

Figure A.1 Co-linear four-point-probe configuration in DCPD system.

For the purpose of modelling the edge effect in four-point DCPD measurements, several

approaches have been brought forward. A solution via conformal transformation (5) assumes

that the specimen is thin compared to the probe spacing. An analytical solution of the Poisson
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Figure A.2 Voltage relative difference between experimental results with edge effect and center

point in a large thin plate.

Table A.1 Probe and plate parameters corresponding to the data shown in Figure 2. L is the

separation of the current-carrying electrodes. P is the separation of the voltage

pick-up electrodes.

Probe parameters

L (mm) 18.009 ± 0.003

P (mm) 6.035 ± 0.003

Plate parameters

Width (mm) 412

Length (mm) 412

Thickness (mm) 1.57 ± 0.01

Conductivity (MS/m) 5.50 ± 0.04

equation given in reference (6) does not restrict the thickness of the specimen, but the form

of the solution is complex and the convergence of the solution is poor for thick samples. A

conventional method-of-images solution (7) yields a simple and elegant solution form, but

generally converges slowly if at least one dimension of the specimen is small relative to the probe

spacing. To improve upon numerical calculation of slowly converging infinite summations,

Uhlir (8) evaluated some auxiliary functions and tabulated the potentials of several simple

image systems, for ease of reference.

This paper focuses on establishing a theoretical model for the situation in which the probe
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is close to one edge of a large plate with arbitrary thickness. Previously, an analytical solution

for the electric field distribution in a half-space conductor has been formulated in terms of a

transverse magnetic (TM) potential (9). Subsequently, the AC potential drop on the surface of

a metal half-space was derived and compared with experimental results (10). The electric field

distribution in a homogeneous conductive plate with uniform thickness was also solved ana-

lytically (11) and good agreement with measured AC potential drop was obtained (12). Here,

the method of images is applied to model the edge effect in four-point DCPD and the solution

form is simple and elegant. To overcome the mentioned disadvantage of slow convergence, a

Fourier Series representation has been employed to obtain much faster convergence for plates

thinner than the probe dimension.

Theory

The theoretical model presented here makes some approximations. First, the connecting

wires are represented as filaments. Secondly, current and voltage contacts are modelled as

infinitesimal points on the specimen surface, which is flat. Last, the plate is homogeneous,

isotropic and has linear material properties. These approximations are shown to be reasonable

since the theory agrees well with experimental data as shown later.

Half-space Conductor

First, consider the simple problem shown in Figure A.3. Direct current I is injected into a

half-space conductor at point P and diverges uniformly. This gives rise to the potential Φ for

a point in the conductor given by

Φ =
I

2πσR
, (A.1)

where σ is the conductivity of the conductor and R =
√

(x− x′)2 + (y − y′)2 + (z − z′)2 is the

distance from the injection point. Unprimed coordinates represent field points and the source

coordinates are primed. Choosing the origin of the coordinate system at the surface of the

conductor means that z = z′ = 0 and R = ρ =
√

(x− x′)2 + (y − y′)2.

In four-point probe problem, the potential at one point is the superposition of potentials
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Figure A.3 Injection of DC current at the surface of a half-space conductor.

Figure A.4 Contact points for current (Pi) and voltage (Qi) electrodes on the surface of a

planar specimen (plan view).

due to both injected and extracted currents. So, the potential of a field point Q due to a source

of current at P2 and a sink of current at P1 on the surface is

Φ (ρ) =
I

2πσ
f (ρ) , (A.2)

with

f (ρ) =
1

ρ2
− 1

ρ1
, (A.3)

where ρi =
∣∣Q̄− P̄i∣∣ =

√
(x− x′i)

2 + (y − y′i)
2 and i = 1, 2. In addition, the potential drop V

between two points Q1 and Q2 on the surface of the specimen due to the current through P1

and P2, as shown in Figure A.4, can be written with the general form

V = ΦQ2 − ΦQ1 =
I

2πσ
[f2 (ρ)− f1 (ρ)] , (A.4)
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where

fi (ρ) =
1

ρi2
− 1

ρi1
, (A.5)

ρij =
∣∣Q̄i − P̄j∣∣=√(xi − x′j)2

+
(
yi − y′j

)2
and i, j = 1, 2.

Conductor with Finite Thickness

Figure A.5 Images for an infinite plate with finite thickness c/2.

In the half-space problem, the potential due to a single injected current is given by equation

(A.1), which satisfies the Von Neumann boundary condition ∂Φ/∂z = 0 on the surface of the

conductor, away from the current injection point. For a large plate of thickness c/2 whose

upper surface is in the plane z = 0, Figure A.5, there is an additional but similar boundary

condition at z = −c/2. The method of images is employed to satisfy the conditions on both of

these surfaces.

Placing an image source at z = −c of the same polarity as the actual source, yields two

opposing currents whose z-components exactly balance in the z = −c/2 plane. Thus, with one

image source added, the Von Neumann boundary condition at z = −c/2 is satisfied. But, the

boundary condition at z = 0 is no longer satisfied because of the effect of the image source. This

effect can be balanced by introducing another image source with the same polarity at z = c.

In fact it is necessary to add images in this way in both positive and negative z-directions out
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to infinity. Finally, the images of a current source at P occupy positions with period c in the

z-direction as shown in Figure A.5.

From the method of images, a source at P2 and a sink at P1 give rise to a potential at Q

on the surface that is a generalization of equation (A.3);

f (ρ) =
+∞∑

n=−∞

 1√
ρ2

2 + (nc)2
− 1√

ρ2
1 + (nc)2

, (A.6)

where ρi =
∣∣Q̄− P̄i∣∣ =

√
(x− x′i)

2 + (y − y′i)
2, i = 1, 2 and the potential drop can be evaluated

as in equation (A.4). Note, when c→∞ only the term with n = 0 survives in the summations

and we obtain

f (ρ) =
+∞∑

n=−∞

 1√
ρ2

2 + (nc)2
− 1√

ρ2
1 + (nc)2

→ (
1

ρ2
− 1

ρ1

)
(A.7)

which agrees with the half-space result (A.3).

For numerical evaluation, the sum in equation (A.7) must be approximated by truncating

at a finite number of terms. In the case of a thick plate the number of terms needed for good

convergence is relatively small, whereas a large number of terms is necessary in the case of a

thin plate due to the slow convergence of the summation for thin plates.

Conductor with Finite Thickness and One Edge

When applying the method of images to obtain a solution for the measured potential drop

when the probe is near an edge of a conductive plate, it is necessary to satisfy the Von Neumann

boundary condition on the three surfaces of the conductor. Let the surfaces be at (0 ≤ y ≤

∞, z = 0), (0 ≤ y ≤ ∞, z = −c/2) and (−c/2 ≤ z ≤ 0, y = 0), as shown in Figure 6. First,

balance the actual source with an image source of the same polarity placed symmetrically on

the y-axis. Then, by the argument of the previous section, there are two corresponding groups

of images aligned in the z-direction with period c as introduced in Figure A.5. Thus the

potential at a field point Q due to a current source and sink on the surface z = 0 can be written

as a generalization of equation (A.6):

f (ρ) =
2∑
j=1

∞∑
n=−∞

 1√
ρ2
j2 + (nc)2

− 1√
ρ2
j1 + (nc)2

. (A.8)
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Figure A.6 Images when close to an edge of a large plate with finite thickness.

Here, ρjk =

√(
x− x′k

)2
+
[
y − (−1)j y′k

]2
with j, k = 1, 2. Again, by using equation (A.4) the

potential drop can be obtained. In the limiting case 0 ≤ y ≤ +∞, y′ → +∞

f (ρ) ≈
+∞∑

n=−∞

1√
(x− x′2)2 + (y − y′2)2 + (nc)2

−
+∞∑

n=−∞

1√
(x− x′1)2 + (y − y′1)2 + (nc)2

=
+∞∑

n=−∞

 1√
ρ2

2 + (nc)2
− 1√

ρ2
1 + (nc)2

 (A.9)

where ρi =
∣∣Q̄− P̄i∣∣=√(x− x′i)

2 + (y − y′i)
2, i = 1, 2, we obtain agreement with the case for

a large plate of finite thickness, equation (A.6).

Fourier Series Representation

The infinite summations (A.6) and (A.8) do not converge very quickly for a plate that is

thinner than the spacing of the probe points. Convergence can be improved by adopting a

Fourier series representation for the infinite sum. The location of the current source and its

images shown in Figures A.5 and A.6 exhibit periodicity in the direction perpendicular to the
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plate surface, z, with period c. This means that the following identity (13) can be used:

+∞∑
n=−∞

exp

[
−α
√
ρ2 + (z − nc)2

]
√
ρ2 + (z − nc)2

=
2

c
K0 (αρ) +

4

c

+∞∑
m=1

K0

[
ρ
√
α2 + (2πm/c)2

]
cos (2πmz/c) ,

(A.10)

in which K0(x) is the modified Bessel function of the second kind of order zero. Putting z = 0

in (A.10), equation (A.6) can be transformed to obtain

f (ρ) =
2

c
ln (ρ1/ρ2) +

4

c

+∞∑
m=1

{K0 [(ρ2/c) 2πm]−K0 [(ρ1/c) 2πm]}. (A.11)

Relation (A.10) was also used in the theory of four-point alternating current potential drop

on a metal plate (14). Results (A.6) and (A.11) provide alternative means of evaluating the

potential drop measured between pick-up points of a four-point probe on the surface of a metal

plate. The infinite sum in equation (A.8) can be transformed similarly, to give the following

result for a plate with finite thickness and an edge,

f (ρ) =
2∑
j=1

{
2

c
ln (ρj1/ρj2) +

4

c

+∞∑
m=1

[K0 (2πmρj2/c)−K0 (2πmρj1/c)]

}
. (A.12)

Figure A.7 compares the convergence of equation (A.11) with that of equation (A.6) for a

case in which the probe length is 8 times the plate thickness (L = ρ1 + ρ2 = 8c). In general,

Figure A.7 Image summation (A.6) converges slowly compared with Fourier series represen-

tation (A.11) in this case where ρ1 = 6c, ρ2 = 2c, c = 2mm.
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equation (A.11) is much more efficient for computing the potential in the case of a plate with

thickness smaller than the probe point separation.

Limiting Case of A Thin Plate

It is possible to show that only the first term on the right-hand side of equation (A.11) is

significant when the plate thickness c/2 is significantly smaller than the separation between

the probe points ρi. For large argument x, the following asymptotic expansion for K0(x) (15)

holds:

K0 (x) ∼
√
π

2x
e−x

(
1− 1

8x
+ . . .

)
, x� 0. (A.13)

The exponential factor including the dimensionless parameter ρ/c is sufficient to make the

summation significantly smaller than the first term in equation (A.12) when ρ/c� 1 and

f (ρ) ≈ 2

c
ln (ρ1/ρ2) , ρ/c� 1. (A.14)

This result agrees with that shown in reference (16), which followed the work of Uhlir (8).

Experiment

A co-linear symmetric four-point-probe measurement system was designed to verify the

theory, as shown in the schematic diagram Figure A.1. Four sprung, point contacts were

mounted in a plastic support block, perpendicular to the surface of a large spring-steel plate.

The pin separations were measured with a travelling microscope. Parameters of the plate and

probe are listed in Table A.1.

In the experiment, a low-frequency alternating current was used rather than direct current,

due to several experimental advantages. Full experimental details are given in reference (12),

where it is shown that the DC theory is valid for AC when the frequency is below a certain

value that depends on the experimental parameters.

In order to validate the theory, both the current through the probe and voltage drop between

the pick-up probes must be measured. The first can be can be monitored by measuring the

voltage drop across a precision resistor in series with the drive circuit. The latter can be

measured by a high input impedance circuit. Values of DCPD both in the center and close
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to one edge of the plate were measured, with the probe oriented parallel to the edge. The

experimental data are compared with theory in Figure A.8. In the figure, an obvious edge

effect is observed and good agreement between theory and experimental data shows that the

edge effect is accurately predicted by the theory.

Figure A.8 Comparison between theory and experimental data. Edge effect theory is got from

equation (A.14) and the infinite plate theory from equation (A.11).

Conclusion

In this paper, an analytical solution has been presented to model edge effects in DCPD

measurements on metal plates with finite thickness. A method-of-images solution converges

quickly for plates somewhat thicker than the probe dimensions. A Fourier series summation

converges more quickly for thinner plates. In future work, DCPD for finite rectangular blocks

and layered cylindrical samples will be studied.
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